Contrast Study on Porosity and Permeability of Tectonically Deformed Coal and Indigenous Coal in Pingdingshan Mining Area, China
-
摘要: 为了研究构造煤孔渗变化特性, 利用平顶山矿区原生结构煤和构造煤, 进行了不同围压、温度、湿度和煤体结构类型等条件下孔隙度及渗透率的实验测定, 对煤层孔渗特性在不同条件下的变化趋势进行了分析.结果表明: 围压、温度、湿度和煤体结构类型4种因素对煤的孔隙度和渗透率均有较大影响, 当温度和围压同时作用时, 围压的作用效果大于温度的作用效果.并用Origin软件对部分实验数据进行了数据拟合, 得出原生结构煤和构造煤的渗透率-孔隙度函数关系.Abstract: Taking the simulation of indigenous coal and tectonically deformed coal in Pingdingshan coal district as the research object, porosity and permeability of different coal samples under different factors are determined in this paper. The variation trend of porosity and permeability under different factors is analyzed. The experimental results show that four factors analyzed have significant impact on both porosity and permeability of coal. The effect of confining pressure is greater than temperature when confining pressure and temperature work together. And part of experiment data are fitted by the Origin software, concluding with the function relationship of porosity and permeability of coal.
-
Key words:
- porosity /
- permeability /
- confining pressure /
- temperature /
- moisture /
- tectonically deformed coal
-
表 1 原生结构煤和构造煤煤岩显微组分测定结果
Table 1. Determination of coal maceral
式样名称 镜质组(%) 惰质组(%) 壳质组(%) 矿物(%) 煤级 原生结构煤 61.7 23.5 13.5 1.3 肥煤 61.5 25.5 11.8 1.2 肥煤 构造煤 56.8 24.2 13.4 5.6 肥煤 55.9 23.3 14.9 4.3 肥煤 表 2 煤孔隙度测试实验条件
Table 2. Experimental scheme of coal porosity
原生结构煤 构造煤 温度(℃) 围压(MPa) 普通 干燥 细粒 粗粒 K1 K2 K3 K4 25 2~10 K5 K6 K7 K8 45 2~10 K9 K10 60 2~10 注:K1~K10为样品号. 表 3 煤渗透率测试实验条件
Table 3. Experimental scheme of coal permeability
原生结构煤 构造煤 温度(℃) 围压(MPa) 普通 干燥 细粒 粗粒 S1 S2 S3 S4 25~55 2 S5 S6 S7 S8 25~55 6 S9 S10 25 2~10 S11 S12 S13 S14 25~55 10 S15 S16 S17 S18 40 2~10 S19 S20 55 2~10 注:S1~S20为样品号. 表 4 不同温度下煤孔隙度与围压函数关系
Table 4. Functions between porosity and confining pressure
温度(℃) 原生结构煤 构造煤 拟合关系φ(%) 相关系数R2 拟合关系φ(%) 相关系数R2 25 5.2597P-0.1421 0.9949 12.611P-0.2335 0.9923 45 4.4449P-0.2729 0.9989 25.178P-0.2711 0.9365 60 4.8410P-0.1908 0.9359 32.484P-0.1748 0.9831 表 5 恒围压条件下煤渗透率与温度函数关系
Table 5. Functions between permeability and temperature
围压(MPa) 原生结构煤 构造煤 拟合关系K (10-9m2) 相关系数R2 拟合关系K (10-9m2) 相关系数R2 2 K=0.014+ 0.104e-0.113T 0.9984 K=0.146+ 1.24e-0.097T 0.9927 6 K= 0.003e-0.057T 0.9652 K=0.091- 0.006e0.042T 0.9606 10 K=8× 10-4e-0.046T 0.9921 K=0.048- 0.009e0.025T 0.9355 表 6 恒温度条件下煤渗透率与围压函数关系
Table 6. Functions between permeability and confining pressure
温度(℃) 原生结构煤 构造煤 拟合关系K (10-9m2) 相关系数R2 拟合关系K (10-9m2) 相关系数R2 25 K=0.001+ 0.08e-0.528P 0.9983 K=-0.002+ 0.4e-0.378P 0.9994 40 K= 0.059e-1.068P 0.9987 K=-0.011+ 0.17e-0.27P 0.9967 55 K= 0.061e-0.471P 0.9996 K=0.054+ 0.79e-0.481P 0.9969 表 7 煤的渗透率与孔隙度的函数关系
Table 7. Functions between permeability and porosity
温度(℃) 原生结构煤 构造煤 拟合关系K (10-2m2) 相关系数R2 拟合关系K (10-2m2) 相关系数R2 25 3×10-10φ11.86 0.9923 6×10-8φ6.33 0.9856 40 5×10-16φ19.36 0.9996 8×10-8φ5.89 0.9570 55 4×10-9φ10.07 0.9872 2×10-6φ5.07 0.9987 -
[1] Arenas, E., Chejne, F., 2004. The Effect of the Activating Agent and Temperature on the Porosity Development of Physically Activated Coal Chars. Carbon, 42(12-13): 2451-2455. doi: 10.1016/j.carbon.2004.04.041 [2] Baghbanan, A., Jing, L., 2008. Stress Effects on Permeability in a Fractured Rock Mass with Correlated Fracture Length and Aperture. International Journal of Rock Mechanics and Mining Sciences, 45(8): 1320-1334. doi: 10.1016/j.ijrmms.2008.01015 [3] Dana, E., Skoczylas, F., 1999. Gas Relative Permeability and Pore Structure of Sandstones. International Journal of Rock Mechanics and Mining Sciences, 36(5): 613-625. doi: 10.1016/S0148-9062(99)00037-6 [4] Díaz Aguado, M.B., González Nicieza, C., 2007. Control and Prevention of Gas Outbursts in Coal Mines, Riosa-Olloniego Coalfield, Spain. International Journal of Coal Geology, 69(4): 253-266. doi: 10.1016/j.coal.2006.05.004 [5] Feng, Z.J., Wan, Z.J., Zhao, Y.S., et al., 2010. Experimental Study of Permeability of Anthracite and Gas Coal Masses under High Temperature and Triaxial Stress. Chinese Journal of Rock Mechanics and Engineering, 29(4): 689-696 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb201004005 [6] Fu, X.H., Li, D.H., Qin, Y., et al., 2002. Experimental Research of Influence of Coal Matrix Shrinkage on Permeability. Journal of China University of Mining & Technology, 31(2): 129-131, 137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200202004.htm [7] Ghabezloo, S., Sulem, J., Guédon, S., et al., 2009. Effective Stress Law for the Permeability of a Limestone. International Journal of Rock Mechanics and Mining Sciences, 46(2): 297-306. doi: 10.1016/j.ijrmms.2008.05.006 [8] Guo, D.Y., Han, D.X., Feng, Z.L., 1998. Experimental Study on the Porosity and Permeability of Disturbed Coal under Confined Pressure. Coal Geology & Exploration, 26(4): 31-34 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/QK199800863669 [9] Guo, D.Y., Song, G.T., Ku, M.X., 2002. Research on Coal Structure Indices to Coal and Gas Outbursts in Pingdingshan Mine Area, China. Journal of Coal Science & Engineering (China), 8(1): 1-6. http://qikan.cqvip.com/Qikan/Article/Detail?id=8588204 [10] He, Y.L., Yang, L.Z., 2005. Mechanism of Effects of Temperature and Effective Stress on Permeability of Sandstone. Chinese Journal of Rock Mechanics and Engineering, 24(14): 2420-2427 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200514004.htm [11] Hu, X., Liang, W., Hou, S.J., et al., 2012. Experimental Study of Effect of Temperature and Stress on Permeability Characteristics of Raw Coal and Shaped Coal. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1222-1229 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201206019.htm [12] Hu, Y.Q., Zhao, Y.S., Yang, D., et al., 2010. Experimental Study of Effect of Temperature on Permeability Characteristics of Lignite. Chinese Journal of Rock Mechanics and Engineering, 29(8): 1585-1590 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb201008010 [13] Huang, Y.Z., Wang, E.Z., 2007. Experimental Study on Coefficient of Sensitiveness between Percolation Rate and Effective Pressure for Low Permeability Rock. Chinese Journal of Rock Mechanics and Engineering, 26(2): 410-414 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb200702025 [14] Jasinge, D., Ranjith, P.G., Choi, S.K., 2011. Effects of Effective Stress Changes on Permeability of Latrobe Valley Brown Coal. Fuel, 90(3): 1292-1300. doi: 10.1016/j.fuel.2010.10.053 [15] Konecny, P., Kozusnikova, A., 2011. Influence of Stress on the Permeability of Coal and Sedimentary Rocks of the Upper Silesian Basin. International Journal of Rock Mechanics and Mining Sciences, 48(2): 347-352. doi: 10.1016/j.jirmms.2010.11.017. [16] Li, Z.Q., Xian, X.F., Long, Q.M., 2009. Experiment Study of Coal Permeability under Different Temperature and Stress. Journal of China University of Mining & Technology, 38(4): 523-527 (in Chinese with English abstract). http://www.researchgate.net/publication/279908140_Experiment_study_of_coal_permeability_under_different_temperature_and_stress [17] Liu, X.J., Gao, H., Liang, L.X., 2011. Study of Temperature and Confining Pressure Effects on Porosity and Permeability in Low Permeability Sandstone. Chinese Journal of Rock Mechanics and Engineering, 30(Suppl. 2): 3771-3778 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2011S2053.htm [18] Peng, S.P., Meng, Z.P., Wang, H., et al., 2003. Testing Study on Pore Ratio and Permeability of Sandstone under Different Confining Pressures. Chinese Journal of Rock Mechanics and Engineering, 22(5): 742-746 (in Chinese with English abstract). http://www.researchgate.net/publication/285735297_Testing_study_on_pore_ratio_and_permeability_of_sandstone_under_different_confining_pressures [19] Sulem, J., Ouffroukh, H., 2006. Shear Banding in Drained and Undrained Triaxial Tests on a Saturated Sandstone: Porosity and Permeability Evolution. International Journal of Rock Mechanics and Mining Sciences, 43(2): 292-310. doi: 10.1016/j.ijrmms.2005.07.001 [20] Wang, R.F., Chen, M.Q., 2008. Characteristics and Influencing Factors of Movable Fluid in Ultra-Low Permeability Sandstone Reservoir. Acta Petrolei Sinica, 29(4): 558-561, 566 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200804016.htm [21] Xu, J., Zhang, D.D., Peng, S.J., et al., 2011. Experimental Research on Impact of Temperature on Seepage Characteristics of Coal Containing Methane under Triaxial Stress. Chinese Journal of Rock Mechanics and Engineering, 30(9): 1848-1854 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=39311738 [22] Xu, J.Y., Peng, D.J., Luo, Z.T., 1995. Significant Effect of Confining Pressure on Structural Fracture Porosities. Acta Petrolei Sinica, 16(3): 44-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB503.006.htm [23] Yuan, C.F., 1985. Tectonically Deformed Coal and Coal Gas Outburst. Coal Science and Technology, 1(1): 53-60 (in Chinese). [24] 冯子军, 万志军, 赵阳升, 等, 2010. 高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究. 岩石力学与工程学报, 29(4): 689-696. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004008.htm [25] 傅雪海, 李大华, 秦勇, 等, 2002. 煤基质收缩对渗透率影响的实验研究. 中国矿业大学学报, 31(2): 129-131, 137. doi: 10.3321/j.issn:1000-1964.2002.02.005 [26] 郭德勇, 韩德馨, 冯志亮, 1998. 围压下构造煤的孔隙度和渗透率特征实验研究. 煤田地质与勘探, 26(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT804.007.htm [27] 贺玉龙, 杨立中, 2005. 温度和有效应力对砂岩渗透率的影响机理研究. 岩石力学与工程学报, 24(14): 2420-2427. doi: 10.3321/j.issn:1000-6915.2005.14.004 [28] 胡雄, 梁为, 侯厶靖, 等, 2012. 温度与应力对原煤、型煤渗透特性影响的试验研究. 岩石力学与工程学报, 31(6): 1222-1229. doi: 10.3969/j.issn.1000-6915.2012.06.018 [29] 胡耀青, 赵阳升, 杨栋, 等, 2010. 温度对褐煤渗透特性影响的试验研究. 岩石力学与工程学报, 29(8): 1585-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008012.htm [30] 黄远智, 王恩志, 2007. 低渗透岩石渗透率对有效应力敏感系数的试验研究. 岩石力学与工程学报, 26(2): 410-414. doi: 10.3321/j.issn:1000-6915.2007.02.025 [31] 李志强, 鲜学福, 隆晴明, 2009. 不同温度应力条件下煤体渗透率实验研究. 中国矿业大学学报, 38(4): 523-527. doi: 10.3321/j.issn:1000-1964.2009.04.012 [32] 刘向君, 高涵, 梁利喜, 2011. 温度围压对低渗透砂岩孔隙度和渗透率的影响研究. 岩石力学与工程学报, 30(增刊2): 3771-3778. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2053.htm [33] 彭苏萍, 孟召平, 王虎, 等, 2003. 不同围压下砂岩孔渗规律试验研究. 岩石力学与工程学报, 22(5): 742-746. doi: 10.3321/j.issn:1000-6915.2003.05.010 [34] 王瑞飞, 陈明强, 2008. 特低渗透砂岩储层可动流体赋存特征及影响因素. 石油学报, 29(4): 558-561, 566. doi: 10.3321/j.issn:0253-2697.2008.04.015 [35] 许江, 张丹丹, 彭守建, 等, 2011. 三轴应力条件下温度对原煤渗流特性影响的实验研究. 岩石力学与工程学报, 30(9): 1848-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109015.htm [36] 许浚远, 彭大钧, 罗蛰潭, 1995. 围压对构造裂缝孔隙度的重要影响. 石油学报, 16(3): 44-47. doi: 10.3321/j.issn:0253-2697.1995.03.017 [37] 袁崇孚, 1985. 构造煤和煤与瓦斯突出. 煤炭科学技术, 1(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198601011.htm