• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    平顶山矿区原生结构煤和构造煤孔渗实验对比

    郭德勇 李春娇 张友谊

    郭德勇, 李春娇, 张友谊, 2014. 平顶山矿区原生结构煤和构造煤孔渗实验对比. 地球科学, 39(11): 1500-1506. doi: 10.3799/dqkx.2014.142
    引用本文: 郭德勇, 李春娇, 张友谊, 2014. 平顶山矿区原生结构煤和构造煤孔渗实验对比. 地球科学, 39(11): 1500-1506. doi: 10.3799/dqkx.2014.142
    Guo Deyong, Li Chunjiao, Zhang Youyi, 2014. Contrast Study on Porosity and Permeability of Tectonically Deformed Coal and Indigenous Coal in Pingdingshan Mining Area, China. Earth Science, 39(11): 1500-1506. doi: 10.3799/dqkx.2014.142
    Citation: Guo Deyong, Li Chunjiao, Zhang Youyi, 2014. Contrast Study on Porosity and Permeability of Tectonically Deformed Coal and Indigenous Coal in Pingdingshan Mining Area, China. Earth Science, 39(11): 1500-1506. doi: 10.3799/dqkx.2014.142

    平顶山矿区原生结构煤和构造煤孔渗实验对比

    doi: 10.3799/dqkx.2014.142
    基金项目: 

    国家自然科学基金项目 41072118

    教育部科学技术研究重大项目 311022

    详细信息
      作者简介:

      郭德勇(1966-), 博士, 教授, 主要从事煤矿瓦斯防治与利用等研究.E-mail: kjkfg@cumtb.edu.cn

    • 中图分类号: P618

    Contrast Study on Porosity and Permeability of Tectonically Deformed Coal and Indigenous Coal in Pingdingshan Mining Area, China

    • 摘要: 为了研究构造煤孔渗变化特性, 利用平顶山矿区原生结构煤和构造煤, 进行了不同围压、温度、湿度和煤体结构类型等条件下孔隙度及渗透率的实验测定, 对煤层孔渗特性在不同条件下的变化趋势进行了分析.结果表明: 围压、温度、湿度和煤体结构类型4种因素对煤的孔隙度和渗透率均有较大影响, 当温度和围压同时作用时, 围压的作用效果大于温度的作用效果.并用Origin软件对部分实验数据进行了数据拟合, 得出原生结构煤和构造煤的渗透率-孔隙度函数关系.

       

    • 图  1  煤孔隙度随围压变化曲线

      a.原生结构煤;b.构造煤

      Fig.  1.  Variation curves of porosity under different temperatures and confining pressure

      图  2  不同湿度原生结构煤孔隙度随围压变化曲线

      Fig.  2.  Variation curves of porosity of dried sample and common sample

      图  3  粗细粒构造煤孔隙度随围压变化曲线

      Fig.  3.  Variation curves of porosity of coarse samples and fine samples

      图  4  不同条件下原生结构煤和构造煤渗透率变化曲线

      a.恒围压条件下原生结构煤渗透率变化曲线;b.恒围压条件下构造煤渗透率变化曲线;c.恒温度条件下原生结构煤渗透率变化曲线;d.恒温度条件下构造煤渗透率变化曲线

      Fig.  4.  Variation curves of permeability under different conditions

      图  5  不同湿度原生结构煤渗透率变化曲线

      a.恒定围压条件下;b.恒定温度条件下

      Fig.  5.  Variation curves of permeability of dried samples and common samples

      图  6  粗细粒构造煤渗透率变化曲线

      a.恒定围压条件下;b.恒定温度条件下

      Fig.  6.  Variation curves of permeability of coarse samples and fine samples

      图  7  煤的孔隙度与渗透率关系曲线

      a.原生结构煤;b.构造煤

      Fig.  7.  Variation curves of porosity and permeability

      表  1  原生结构煤和构造煤煤岩显微组分测定结果

      Table  1.   Determination of coal maceral

      式样名称 镜质组(%) 惰质组(%) 壳质组(%) 矿物(%) 煤级
      原生结构煤 61.7 23.5 13.5 1.3 肥煤
      61.5 25.5 11.8 1.2 肥煤
      构造煤 56.8 24.2 13.4 5.6 肥煤
      55.9 23.3 14.9 4.3 肥煤
      下载: 导出CSV

      表  2  煤孔隙度测试实验条件

      Table  2.   Experimental scheme of coal porosity

      原生结构煤 构造煤 温度(℃) 围压(MPa)
      普通 干燥 细粒 粗粒
      K1 K2 K3 K4 25 2~10
      K5 K6 K7 K8 45 2~10
      K9 K10 60 2~10
      注:K1~K10为样品号.
      下载: 导出CSV

      表  3  煤渗透率测试实验条件

      Table  3.   Experimental scheme of coal permeability

      原生结构煤 构造煤 温度(℃) 围压(MPa)
      普通 干燥 细粒 粗粒
      S1 S2 S3 S4 25~55 2
      S5 S6 S7 S8 25~55 6
      S9 S10 25 2~10
      S11 S12 S13 S14 25~55 10
      S15 S16 S17 S18 40 2~10
      S19 S20 55 2~10
      注:S1~S20为样品号.
      下载: 导出CSV

      表  4  不同温度下煤孔隙度与围压函数关系

      Table  4.   Functions between porosity and confining pressure

      温度(℃) 原生结构煤 构造煤
      拟合关系φ(%) 相关系数R2 拟合关系φ(%) 相关系数R2
      25 5.2597P-0.1421 0.9949 12.611P-0.2335 0.9923
      45 4.4449P-0.2729 0.9989 25.178P-0.2711 0.9365
      60 4.8410P-0.1908 0.9359 32.484P-0.1748 0.9831
      下载: 导出CSV

      表  5  恒围压条件下煤渗透率与温度函数关系

      Table  5.   Functions between permeability and temperature

      围压(MPa) 原生结构煤 构造煤
      拟合关系K (10-9m2) 相关系数R2 拟合关系K (10-9m2) 相关系数R2
      2 K=0.014+ 0.104e-0.113T 0.9984 K=0.146+ 1.24e-0.097T 0.9927
      6 K= 0.003e-0.057T 0.9652 K=0.091- 0.006e0.042T 0.9606
      10 K=8× 10-4e-0.046T 0.9921 K=0.048- 0.009e0.025T 0.9355
      下载: 导出CSV

      表  6  恒温度条件下煤渗透率与围压函数关系

      Table  6.   Functions between permeability and confining pressure

      温度(℃) 原生结构煤 构造煤
      拟合关系K (10-9m2) 相关系数R2 拟合关系K (10-9m2) 相关系数R2
      25 K=0.001+ 0.08e-0.528P 0.9983 K=-0.002+ 0.4e-0.378P 0.9994
      40 K= 0.059e-1.068P 0.9987 K=-0.011+ 0.17e-0.27P 0.9967
      55 K= 0.061e-0.471P 0.9996 K=0.054+ 0.79e-0.481P 0.9969
      下载: 导出CSV

      表  7  煤的渗透率与孔隙度的函数关系

      Table  7.   Functions between permeability and porosity

      温度(℃) 原生结构煤 构造煤
      拟合关系K (10-2m2) 相关系数R2 拟合关系K (10-2m2) 相关系数R2
      25 3×10-10φ11.86 0.9923 6×10-8φ6.33 0.9856
      40 5×10-16φ19.36 0.9996 8×10-8φ5.89 0.9570
      55 4×10-9φ10.07 0.9872 2×10-6φ5.07 0.9987
      下载: 导出CSV
    • [1] Arenas, E., Chejne, F., 2004. The Effect of the Activating Agent and Temperature on the Porosity Development of Physically Activated Coal Chars. Carbon, 42(12-13): 2451-2455. doi: 10.1016/j.carbon.2004.04.041
      [2] Baghbanan, A., Jing, L., 2008. Stress Effects on Permeability in a Fractured Rock Mass with Correlated Fracture Length and Aperture. International Journal of Rock Mechanics and Mining Sciences, 45(8): 1320-1334. doi: 10.1016/j.ijrmms.2008.01015
      [3] Dana, E., Skoczylas, F., 1999. Gas Relative Permeability and Pore Structure of Sandstones. International Journal of Rock Mechanics and Mining Sciences, 36(5): 613-625. doi: 10.1016/S0148-9062(99)00037-6
      [4] Díaz Aguado, M.B., González Nicieza, C., 2007. Control and Prevention of Gas Outbursts in Coal Mines, Riosa-Olloniego Coalfield, Spain. International Journal of Coal Geology, 69(4): 253-266. doi: 10.1016/j.coal.2006.05.004
      [5] Feng, Z.J., Wan, Z.J., Zhao, Y.S., et al., 2010. Experimental Study of Permeability of Anthracite and Gas Coal Masses under High Temperature and Triaxial Stress. Chinese Journal of Rock Mechanics and Engineering, 29(4): 689-696 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb201004005
      [6] Fu, X.H., Li, D.H., Qin, Y., et al., 2002. Experimental Research of Influence of Coal Matrix Shrinkage on Permeability. Journal of China University of Mining & Technology, 31(2): 129-131, 137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200202004.htm
      [7] Ghabezloo, S., Sulem, J., Guédon, S., et al., 2009. Effective Stress Law for the Permeability of a Limestone. International Journal of Rock Mechanics and Mining Sciences, 46(2): 297-306. doi: 10.1016/j.ijrmms.2008.05.006
      [8] Guo, D.Y., Han, D.X., Feng, Z.L., 1998. Experimental Study on the Porosity and Permeability of Disturbed Coal under Confined Pressure. Coal Geology & Exploration, 26(4): 31-34 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/QK199800863669
      [9] Guo, D.Y., Song, G.T., Ku, M.X., 2002. Research on Coal Structure Indices to Coal and Gas Outbursts in Pingdingshan Mine Area, China. Journal of Coal Science & Engineering (China), 8(1): 1-6. http://qikan.cqvip.com/Qikan/Article/Detail?id=8588204
      [10] He, Y.L., Yang, L.Z., 2005. Mechanism of Effects of Temperature and Effective Stress on Permeability of Sandstone. Chinese Journal of Rock Mechanics and Engineering, 24(14): 2420-2427 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200514004.htm
      [11] Hu, X., Liang, W., Hou, S.J., et al., 2012. Experimental Study of Effect of Temperature and Stress on Permeability Characteristics of Raw Coal and Shaped Coal. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1222-1229 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201206019.htm
      [12] Hu, Y.Q., Zhao, Y.S., Yang, D., et al., 2010. Experimental Study of Effect of Temperature on Permeability Characteristics of Lignite. Chinese Journal of Rock Mechanics and Engineering, 29(8): 1585-1590 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb201008010
      [13] Huang, Y.Z., Wang, E.Z., 2007. Experimental Study on Coefficient of Sensitiveness between Percolation Rate and Effective Pressure for Low Permeability Rock. Chinese Journal of Rock Mechanics and Engineering, 26(2): 410-414 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb200702025
      [14] Jasinge, D., Ranjith, P.G., Choi, S.K., 2011. Effects of Effective Stress Changes on Permeability of Latrobe Valley Brown Coal. Fuel, 90(3): 1292-1300. doi: 10.1016/j.fuel.2010.10.053
      [15] Konecny, P., Kozusnikova, A., 2011. Influence of Stress on the Permeability of Coal and Sedimentary Rocks of the Upper Silesian Basin. International Journal of Rock Mechanics and Mining Sciences, 48(2): 347-352. doi: 10.1016/j.jirmms.2010.11.017.
      [16] Li, Z.Q., Xian, X.F., Long, Q.M., 2009. Experiment Study of Coal Permeability under Different Temperature and Stress. Journal of China University of Mining & Technology, 38(4): 523-527 (in Chinese with English abstract). http://www.researchgate.net/publication/279908140_Experiment_study_of_coal_permeability_under_different_temperature_and_stress
      [17] Liu, X.J., Gao, H., Liang, L.X., 2011. Study of Temperature and Confining Pressure Effects on Porosity and Permeability in Low Permeability Sandstone. Chinese Journal of Rock Mechanics and Engineering, 30(Suppl. 2): 3771-3778 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2011S2053.htm
      [18] Peng, S.P., Meng, Z.P., Wang, H., et al., 2003. Testing Study on Pore Ratio and Permeability of Sandstone under Different Confining Pressures. Chinese Journal of Rock Mechanics and Engineering, 22(5): 742-746 (in Chinese with English abstract). http://www.researchgate.net/publication/285735297_Testing_study_on_pore_ratio_and_permeability_of_sandstone_under_different_confining_pressures
      [19] Sulem, J., Ouffroukh, H., 2006. Shear Banding in Drained and Undrained Triaxial Tests on a Saturated Sandstone: Porosity and Permeability Evolution. International Journal of Rock Mechanics and Mining Sciences, 43(2): 292-310. doi: 10.1016/j.ijrmms.2005.07.001
      [20] Wang, R.F., Chen, M.Q., 2008. Characteristics and Influencing Factors of Movable Fluid in Ultra-Low Permeability Sandstone Reservoir. Acta Petrolei Sinica, 29(4): 558-561, 566 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200804016.htm
      [21] Xu, J., Zhang, D.D., Peng, S.J., et al., 2011. Experimental Research on Impact of Temperature on Seepage Characteristics of Coal Containing Methane under Triaxial Stress. Chinese Journal of Rock Mechanics and Engineering, 30(9): 1848-1854 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=39311738
      [22] Xu, J.Y., Peng, D.J., Luo, Z.T., 1995. Significant Effect of Confining Pressure on Structural Fracture Porosities. Acta Petrolei Sinica, 16(3): 44-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB503.006.htm
      [23] Yuan, C.F., 1985. Tectonically Deformed Coal and Coal Gas Outburst. Coal Science and Technology, 1(1): 53-60 (in Chinese).
      [24] 冯子军, 万志军, 赵阳升, 等, 2010. 高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究. 岩石力学与工程学报, 29(4): 689-696. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004008.htm
      [25] 傅雪海, 李大华, 秦勇, 等, 2002. 煤基质收缩对渗透率影响的实验研究. 中国矿业大学学报, 31(2): 129-131, 137. doi: 10.3321/j.issn:1000-1964.2002.02.005
      [26] 郭德勇, 韩德馨, 冯志亮, 1998. 围压下构造煤的孔隙度和渗透率特征实验研究. 煤田地质与勘探, 26(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT804.007.htm
      [27] 贺玉龙, 杨立中, 2005. 温度和有效应力对砂岩渗透率的影响机理研究. 岩石力学与工程学报, 24(14): 2420-2427. doi: 10.3321/j.issn:1000-6915.2005.14.004
      [28] 胡雄, 梁为, 侯厶靖, 等, 2012. 温度与应力对原煤、型煤渗透特性影响的试验研究. 岩石力学与工程学报, 31(6): 1222-1229. doi: 10.3969/j.issn.1000-6915.2012.06.018
      [29] 胡耀青, 赵阳升, 杨栋, 等, 2010. 温度对褐煤渗透特性影响的试验研究. 岩石力学与工程学报, 29(8): 1585-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008012.htm
      [30] 黄远智, 王恩志, 2007. 低渗透岩石渗透率对有效应力敏感系数的试验研究. 岩石力学与工程学报, 26(2): 410-414. doi: 10.3321/j.issn:1000-6915.2007.02.025
      [31] 李志强, 鲜学福, 隆晴明, 2009. 不同温度应力条件下煤体渗透率实验研究. 中国矿业大学学报, 38(4): 523-527. doi: 10.3321/j.issn:1000-1964.2009.04.012
      [32] 刘向君, 高涵, 梁利喜, 2011. 温度围压对低渗透砂岩孔隙度和渗透率的影响研究. 岩石力学与工程学报, 30(增刊2): 3771-3778. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2053.htm
      [33] 彭苏萍, 孟召平, 王虎, 等, 2003. 不同围压下砂岩孔渗规律试验研究. 岩石力学与工程学报, 22(5): 742-746. doi: 10.3321/j.issn:1000-6915.2003.05.010
      [34] 王瑞飞, 陈明强, 2008. 特低渗透砂岩储层可动流体赋存特征及影响因素. 石油学报, 29(4): 558-561, 566. doi: 10.3321/j.issn:0253-2697.2008.04.015
      [35] 许江, 张丹丹, 彭守建, 等, 2011. 三轴应力条件下温度对原煤渗流特性影响的实验研究. 岩石力学与工程学报, 30(9): 1848-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109015.htm
      [36] 许浚远, 彭大钧, 罗蛰潭, 1995. 围压对构造裂缝孔隙度的重要影响. 石油学报, 16(3): 44-47. doi: 10.3321/j.issn:0253-2697.1995.03.017
      [37] 袁崇孚, 1985. 构造煤和煤与瓦斯突出. 煤炭科学技术, 1(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198601011.htm
    • 加载中
    图(7) / 表(7)
    计量
    • 文章访问数:  3141
    • HTML全文浏览量:  178
    • PDF下载量:  626
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-05-20
    • 刊出日期:  2014-11-01

    目录

      /

      返回文章
      返回