• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    土壤干缩裂缝网络几何特征

    张展羽 王策 朱成立 朱文渊 吴春辉

    张展羽, 王策, 朱成立, 朱文渊, 吴春辉, 2014. 土壤干缩裂缝网络几何特征. 地球科学, 39(10): 1465-1472. doi: 10.3799/dqkx.2014.139
    引用本文: 张展羽, 王策, 朱成立, 朱文渊, 吴春辉, 2014. 土壤干缩裂缝网络几何特征. 地球科学, 39(10): 1465-1472. doi: 10.3799/dqkx.2014.139
    Zhang Zhanyu, Wang Ce, Zhu Chengli, Zhu Wenyuan, Wu Chunhui, 2014. Geometric Characteristics of Shrinkage Crack Network in Soil. Earth Science, 39(10): 1465-1472. doi: 10.3799/dqkx.2014.139
    Citation: Zhang Zhanyu, Wang Ce, Zhu Chengli, Zhu Wenyuan, Wu Chunhui, 2014. Geometric Characteristics of Shrinkage Crack Network in Soil. Earth Science, 39(10): 1465-1472. doi: 10.3799/dqkx.2014.139

    土壤干缩裂缝网络几何特征

    doi: 10.3799/dqkx.2014.139
    基金项目: 

    国家自然科学基金资助项目 51179050

    高等学校学科创新引智计划 B12032

    江西省水利科技项目 KT201109

    详细信息
      作者简介:

      张展羽(1957-), 男, 教授, 博士生导师, 主要从事灌溉排水理论及技术研究.E-mail: zhanyuzh@126.com

    • 中图分类号: S152.4

    Geometric Characteristics of Shrinkage Crack Network in Soil

    • 摘要: 通过室内试验研究了土壤干缩裂缝发育规律,采用数字图像处理技术与AutoCAD测量功能,分析了不同含水率下土壤裂缝网络几何形态特征.结果表明:土壤含水率达到43%时出现裂缝,裂缝骨架长度、周长和面积分别在含水率达到23%、23%、7%时趋于稳定,裂缝平均宽度的发育经历了波动增长、线性增长和稳定3个阶段,并在含水率达到7%时保持不变;裂缝条数与节点数之比随含水率降低而减小,并最终保持在1.67,此结果与收缩块区分散度和裂缝交叉角度分布规律共同表明,裂缝网络形态呈方形正交网络分布趋势,且处于方型网络与“T”型正交网络之间;裂缝平均弯曲度随含水率减小,由1.06减小至1.02并保持恒定,揭示了裂缝整体弯曲程度与不同时期裂缝弯曲的变化规律.

       

    • 图  1  裂缝图像处理过程

      Fig.  1.  Crack image processing

      图  2  土壤裂缝二值图像系列

      Fig.  2.  Series of soil cracks in binary image

      图  3  土壤含水率、蒸发强度随累积时间变化规律

      Fig.  3.  Changes in water content and evaporation rate of soil in relation to the accumulated drying time

      图  4  裂缝面积率与土壤含水率关系曲线

      Fig.  4.  Changes in crack ratio in relation to water content

      图  5  裂缝骨架总长度、裂缝总周长、裂缝平均宽度与含水率关系曲线

      Fig.  5.  Changes in the total length of the crack skeleton, crack perimeter and average width of the crack in relation to the water content upon drying

      图  6  4个典型阶段裂缝交叉角度频次分布

      Fig.  6.  Frequency distribution of intersection angles in four typical stages

      图  7  收缩块区分散度频次分布

      Fig.  7.  The distribution frequency of the aggregates dispersity

      图  8  5种规则网络实例

      Fig.  8.  Examples of five types of regular geometrical network pattern

      图  9  不同含水率下裂缝条数与网络节点数比值

      Fig.  9.  Relations between the numbers of segments and intersections in the crack networks under different water content

      图  10  典型阶段裂缝平均弯曲度

      Fig.  10.  Mean tortuosity of the crack in typical stages

      表  1  土壤试样物理性质

      Table  1.   Physical properties of tested soil

      试样土壤种类 颗粒粒径分布(%) 容重(g·cm-3) 土壤质地
      > 0.02 mm 0.02~0.002 mm < 0.000 2 mm
      水稻土 31.29 23.49 45.23 1.56 粘土
      下载: 导出CSV

      表  2  规则图形分散度

      Table  2.   Dispersity of the regular geometrical patterns

      形状 正三角 矩形 黄金矩形 正方形
      分散度 20.78 18.00 16.94 16.00
      形状 正五边形 正六边形 正八边形 圆形
      分散度 14.52 13.86 13.32 12.57
      注:矩形长宽比为2∶1,黄金矩形长宽比约为1.618.
      下载: 导出CSV

      表  3  裂缝条数与节点数统计以及二者的比值

      Table  3.   Numbers of the crack fragments and intersections and their ratio

      含水率(θ) 裂缝条数(S) 节点数(I) 比值(S/I)
      31.62 13 4 3.250
      29.32 38 17 2.235
      27.70 62 33 1.879
      25.28 99 57 1.737
      22.58 111 67 1.657
      21.36 114 69 1.652
      18.85 118 70 1.686
      16.22 114 69 1.652
      15.09 115 69 1.667
      12.89 117 70 1.671
      9.86 116 69 1.681
      7.23 116 69 1.681
      6.05 115 70 1.643
      4.48 115 69 1.667
      3.80 116 7 1.657
      下载: 导出CSV
    • [1] Adams, J.E., Hanks, R.J., 1964. Evaporation from Soil Shrinkage Cracks. Soil Science Society of America Journal, 28(2): 281-284. doi: 10.2136/sssaj1964.03615995002800020043x
      [2] Allaire, S.E., Roulier, S., Cessna, A.J., 2009. Quantifying Preferential Flow in Soils: A Review of Different Techniques. Journal of Hydrology, 378(1-2): 179-204. doi: 10.1016/j.jhydrol.2009.08.013
      [3] Baer, J.U., Kent, T.F., Anderson, S.H., 2009. Image Analysis and Fractal Geometry to Characterize Soil Desiccation Cracks. Geoderma, 154(1-2): 153-163. doi: 10.1016/j.geoderma.2009.10.008
      [4] Chertkov, V.Y., 2012. An Integrated Approach to Soil Structure, Shrinkage, and Cracking in Samples and Layers. Geoderma, 173-174: 258-273. doi: 10.1016/j.geoderma.2012.01.010
      [5] Chertkov, V.Y., Ravina, I., 1999. Tortuosity of Crack Networks in Swelling Clay Soils. Soil Science Society of America Journal, 63(6): 1523-1530. doi: 0.2136/sssaj1999.6361523x
      [6] Horgan, G.W., Young, I.M., 2000. An Empirical Stochastic Model for the Geometry of Two-Dimensional Crack Growth in Soil (with Discussion). Geoderma, 96(4): 263-276. doi: 10.1016/S0016-7061(00)00015-X
      [7] Li, J.H., Zhang, L.M., 2010. Geometric Parameters and REV of a Crack Network in Soil. Computers and Geotechnics, 37(4): 466-475. doi: 10.1016/j.compgeo.2010.01.006
      [8] Liu, C.W., Cheng, S.W., Yu, W.S., et al., 2003. Water Infiltration Rate in Cracked Paddy Soil. Geoderma, 117(1-2): 169-181. doi: 10.1016/S0016-7061(03)00165-4
      [9] Ma, H.Y., Zhang, Z.Y., Jiao, X.Y., et al., 2013. An Experimental Study on Soil Water Movement and Distribution of Film-Furrow Irrigation. Journal of Food, Agriculture & Environment, 11(2): 858-864. http://www.researchgate.net/publication/289408816_An_experimental_study_on_soil_water_movement_and_distribution_of_film-furrow_irrigation
      [10] Novák, V., 1999. Soil-Crack Characteristics—Estimation Methods Applied to Heavy Soils in the NOPEX Area. Agricultural and Forest Meteorology, 98-99: 501-507. doi: 10.1016/S0168-1923(99)0019-7
      [11] Novák, V., Šimåunek, J., Genuchten, M., 2000. Infiltration of Water into Soil with Cracks. Journal of Irrigation and Drainage Engineering, 126(1): 41-47. doi: 10.1016/(ASCE)0733-P437(2000)126:1(41)
      [12] Qi, D.H., Jin, M.G., Liu, Y.F., 2007. Determination of Preferential Flow in Precipitation Infiltration Recharge. Earth Science—Journal of China University of Geosciences, 32(3): 420-424 (in Chinese with English abstract). http://www.researchgate.net/publication/289375962_Determination_of_preferential_flow_in_precipitation_infiltration_recharge
      [13] Sharma, R.B., Verma, G.P., 1977. Characterization of Shrinkage Cracks in Medium Black Clay Soil of Madhya Pradesh. Plant and Soil, 48(2): 323-333. doi: 10.1007/BF02187244
      [14] Tang, C.S., Shi, B., Liu, C., et al., 2011. Experimental Characterization of Shrinkage and Desiccation Cracking in Thin Clay Layer. Applied Clay Science, 52(1-2): 69-77. doi: 10.1016/j.clay.2011.01.032
      [15] Velde, B., 1999. Structure of Surface Cracks in Soil and Muds. Geoderma, 93(1-2): 101-124. doi: 10.1016/S0016-7061(99)00047-6
      [16] Vogel, H.J., Hoffmann, H., Leopold, A., et al., 2005a. Studies of Crack Dynamics in Clay Soil: Ⅱ. A Physically Based Model for Crack Formation. Geoderma, 125(3-4): 213-223. doi: 10.1016/j.geoderma.2004.07.008
      [17] Vogel, H.J., Hoffmann, H., Roth, K., 2005b. Studies of Crack Dynamics in Clay Soil: Ⅰ. Experimental Methods, Results, and Morphological Quantification. Geoderma, 125(3-4): 203-211. doi: 10.1016/j.geoderma.2004.07.009
      [18] Wang, Y., Feng, D., Ng, C.W.W., 2013. Modeling the 3D Crack Network and Anisotropic Permeability of Saturated Cracked Soil. Computers and Geotechnics, 52: 63-70. doi: 10.1016/j.compgeo.2013.03.005
      [19] Xiong, C.R., Tang, H.M., Liu, B.C., et al., 2007. Using SEM Photos to Gain the Pore Structural Parameters of Soil Samples. Earth Science—Journal of China University of Geosciences, 32(3): 415-419(in Chinese with English abstract).
      [20] Xiong, D.H., Zhou, H.Y., Du, C.J., et al., 2006. A Review on the Study of Soil Cracking. Soils, 38(3): 249-255(in Chinese with English abstract).
      [21] Zhang, Z.Y., Zhu, W.Y., Zhu, C.L., et al., 2013. Statistical Characteristics of Random Distribution of Shrinkage Cracks on Farmland Soil Surface. Transactions of the Chinese Society of Agricultural Engineering, 29(16): 119-124(in Chinese with English abstract).
      [22] 齐登红, 靳孟贵, 刘延锋, 2007. 降水入渗补给过程中优先流的确定. 地球科学——中国地质大学学报, 32(3): 420-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703016.htm
      [23] 熊承仁, 唐辉明, 刘宝琛, 等, 2007. 利用SEM照片获取土的孔隙结构参数. 地球科学——中国地质大学学报, 32(3): 415-419. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703015.htm
      [24] 熊东红, 周红艺, 杜长江, 等, 2006. 土壤裂缝研究进展. 土壤, 38(3): 249-255. doi: 10.3321/j.issn:0253-9829.2006.03.003
      [25] 张展羽, 朱文渊, 朱成立, 等, 2013. 农田土壤表面干缩裂缝的随机分布统计特征. 农业工程学报, 29(16): 119-124. doi: 10.3969/j.issn.1002-6819.2013.16.015
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  3297
    • HTML全文浏览量:  137
    • PDF下载量:  687
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-02-23
    • 刊出日期:  2014-10-01

    目录

      /

      返回文章
      返回