Magnetic Susceptibility Characteristics of Weathering-Pedogenic Topsoil along East Part of China and Its Significance
-
摘要: 磁化率是环境磁学研究中较常用、较易获得的指标之一,但其解释和意义又最为复杂.对采自中国东部从北到南涵盖中国主要气候带的风化-成壤成因的79个表层土壤样品进行高、低频磁化率和非磁滞剩磁测试并分析其与降水量、年均温等气候参数的关系.结果表明:(1)发育于不同类型母岩的风化-成壤成因表层土壤磁学性质之间存在显著差异,各磁化率参数与气候条件参数之间的关系大不一样,在大空间尺度进行磁学与气候条件的关系研究时,必须充分考虑地质背景与母岩类型的差异.(2)发育于花岗岩的表层土壤非磁滞剩磁磁化率与年降水量和年均温间呈显著负相关关系;而发育于玄武岩的表层土壤非磁滞剩磁磁化率与年降水量呈显著正相关关系.被广泛认可的黄土-古土壤序列磁化率与成壤的关系不一定适用于大空间尺度的其他气候区域.(3)在风化-成壤过程中,磁性颗粒有变细的趋势,但降水强度增大时,一些超细颗粒较易被搬运离开原地,单一磁学参数结果难以反映气候条件及环境变化.(4)风化-成壤成因表层土壤非磁滞剩磁磁化率能较好地反映风化成因土壤的风化程度,但风化-成壤表层土壤磁学性质变化的机制特别是对相应土壤剖面的磁性矿物迁移转化有待深入研究.Abstract: Magnetic susceptibility is one of the most widely used and most easily to be obtained parameters of environmental magnetism. However, the meaning and interpretation of magnetic susceptibility is the most complicate. High, low frequency magnetic susceptibility and non-hysteresis remanence were measured for seventy-nine weathering-pedogenic topsoil samples collected from the east part of China, from north to south, covering the main climatic zones within China. Moreover, relationship between these magnetic parameters and climate indexes such as precipitation and annual average temperature was analyzed. The results indicate that: (1) Significant difference of magnetic properties is existed among weathering-pedogenesis topsoil that derived from different parent rocks. The relationship between all magnetic susceptibility parameters and climate indexes is much different. Difference of geological conditions and parent rocks must be taken full consideration when the relationship between magnetism and climate conditions is discussed in large spatial scale. (2) The non-hysteresis remanence magnetic susceptibility is negatively related to precipitation and annual average temperature for topsoil derived from granite. However, it is positively related to precipitation for topsoil derived from balsalt. The widely recognized relationship between magnetic strength of paleosol and pedogenesis of loess-paleosol sequence from the Chinese Loess Plateau isn't always proper to apply in other climate area. (3) Magnetic particles tend to be finer during weathering and soil-forming process. However, single magnetic parameter can't reflect the climate and environmental change because some ultrafine particles are easy to be carried out in situ due to increasing rainfall intensity. (4) Magnetic susceptibility of non-hysteresis remanence of weathering-pedogenic topsoil can reflect the weathering degree of weathering soil. The magnetic variation mechanism of weathering-pedogenic topsoil, especially magnetic mineral transformation of corresponding soil profile, is still needed further study.
-
Key words:
- magnetic susceptibility /
- weathering-pedogenesis /
- topsoil /
- east part of China /
- environmental geology
-
表 1 各类型表层土壤磁化率与纬度及气候参数之间的相关系数
Table 1. Correlation coefficients between magnetic susceptibility and latitude and climate parameters for different type of topsoil
所有样品79个 纬度(°) 年均降水量(mm) 年均气温(℃) χlf(10-8 m3/kg) χARM(10-6 m3/kg) χfd(%) χlf(10-8 m3/kg) -0.042 -0.086 0.063 1 - - χARM(10-8 m3/kg) -0.233* 0.089 0.236* 0.806* 1 - χfd(%) -0.236* 0.414* 0.181 -0.391* -0.190 1 沉积岩、花岗岩和玄武岩 χlf(10-8 m3/kg) -0.011 -0.111 0.031 1 - - χARM(10-8 m3/kg) -0.233 0.084 0.235* 0.796* 1 - χfd(%) -0.281* 0.451* 0.225 -0.383* -0.180 1 沉积岩和花岗岩 χlf(10-8 m3/kg) 0.323 -0.309 -0.276 1 0.866 -0.244 χARM(10-8 m3/kg) 0.294 -0.275 -0.282 0.866* 1 -0.040 χfd(%) -0.236 0.522* 0.123 -0.244 -0.040 1 沉积岩 χlf(10-8 m3/kg) 0.468 -0.414 -0.447 1 - - χARM(10-8 m3/kg) 0.113 -0.155 -0.105 0.857* 1 - χfd(%) -0.771* 0.946* 0.631* -0.485 -0.287 1 花岗岩 χlf(10-8 m3/kg) 0.713* -0.680* -0.744* 1 - - χARM(10-8 m3/kg) 0.831* -0.784* -0.829* 0.907* 1 - χfd(%) 0.300 -0.035 -0.309 0.336 0.359 1 玄武岩 χlf(10-8 m3/kg) -0.273 0.246 0.275 1 - - χARM(10-8 m3/kg) -0.594* 0.561* 0.577* 0.697* 1 - χfd(%) -0.221 0.266 0.191 -0.149 0.116 1 *注:表示相关性显著性水平大于95%. -
[1] An, Z.S., Kukla, G.J., Porter, S.C., et al., 1991. Magnetic Susceptibility Evidence of Monsoon Variation on the Loess Plateau of Central China during the Last 1 300 000 Years. Quaternary Research, 36(1): 29-36. doi: 10.1016/0033-5894(91)90015-W [2] Balsam, W.L., Ellwood, B.B., Ji, J.F., et al., 2011. Magnetic Susceptibility as a Proxy for Rainfall: Worldwide Data from Tropical and Temperate Climate. Quaternary Science Reviews, 30(19-20): 2732-2744. doi: 10.1016/j.quascirev.2011.06.002 [3] Balsam, W.L., Ji, J.F., Chen, J., 2004. Climatic Interpretation of the Luochuan and Lingtai Loess Sections, China, Based on Changing Iron Oxide Mineralogy and Magnetic Susceptibility. Earth and Planetary Science Letters, 223: 335-348. doi: 10.1016/j.epsl.2004.04.023 [4] Begét, J.E., Stone, D.B., Hawkins, D.B., 1990. Paleoclimatic Forcing of Magnetic Susceptibility Variations in Alaskan Loess during the Late Quaternary. Geology, 18(1): 40-43. doi: 10.1130/0091-7613(1990)018<0040:PFOMSV>2.3.CO;2 [5] Blaha, U., Basavaiah, N., Deenadayalan, K., et al., 2011. Onset of Industrial Pollution Recorded in Mumbai Mudflat Sediments, Using Integrated Magnetic, Chemical, 210Pb Dating, and Microscopic Methods. Environmental Science & Technology, 45(2): 686-692. doi: 10.1021/es1025905 [6] Borges, J.F.M., Hneda, M.L., Brinatti, A.M., et al., 2011. Mössbauer Analysis of High-Energy Mechanical-Milled Sand Fraction of a Magnetic Soil Developing on Basalt. Hyperfine Interact, 203: 9-15. doi: 10.1007/s10751-011-0364-y [7] Chlachula, J.M., Evans, M.E., Rutter, N.W., 1998. A Magnetic Investigation of a Late Quaternary Loess/Palaeosol Record in Siberia. Geophysical Journal International, 132(1): 128-132. doi: 10.1046/j.1365-246x.1998.00399.x [8] Deng, C.L., Liu, Q.S., Pan, Y.X., et al., 2007. Environmental Magnetism of Chinese Loess-Paleosol Sequences. Quaternary Sciences, 27(2): 193-209 (in Chinese with English abstract). http://www.dsjyj.com.cn/EN/Y2007/V27/I2/193 [9] Deng, S.F., Yang, T.B., Qin, H.Y., et al., 2011. Magnetic Susceptibility and Its Influencing Factors from Loess-Paleosol in Tacheng, Xinjiang, China. Journal of Desert Research, 31(4): 848-854 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGSS201104008.htm [10] Derbyshire, E., Meng, X.M., Kemp, R.A., 1998. Provenance, Transport and Characteristics of Modern Aeolian Dust in Western Gansu Province, China, and Interpretation of the Quaternary Loess Record. Journal of Arid Environments, 39(2): 497-516. doi: 10.1006/jare.1997.0369 [11] Evans, M.E., Heller, F., 2003. Environmental Magnetism: Principles and Application of Environmagnetics. Academic Press, San Diego. [12] Florindo, F., Zhu, R., Guo, B., 1999. Low-Field Susceptibility and Palaeorainfall Estimates, New Dat along a N-S Transect of the Chinese Loess Plateau. Phys. Chem. Earth(A), 24(9): 817-821. doi: 10.1016/S1464-1895(99)00120-9 [13] Han, J.M., Jiang, W.Y., Chu, J., 1997. Grain Size Distribution of Magnetic Minerals in Loess and Paleosol. Quaternary Sciences, 3: 281-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199703010.htm [14] Hao, Q.Z., Oldfield, F., Bloemendal, J., et al., 2008. The Magnetic Properties of Loess and Paleosol Samples from the Chinese Loess Plateau Spanning the Last 22 Million Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(3-4): 389-404. doi: 10.1016/j.palaeo.2007.11.010 [15] Heller, F., Liu, T.S., 1984. Magnetism of Chinese Loess Deposits. Geophysical Journal Royal Astronomical Society, 77(1): 125-141. doi: 10.1111/j.1365-246X.1984.tb01928.x [16] Heller, F., Shen, C.D., Beer, J., et al., 1993. Quantitative Estimates of Pedogenic Ferromagnetic Mineral Formation in Chinese Loess and Paleoclimatic Implications. Earth and Planetary Science Letters, 114(2-3): 385-390. doi: 10.1016/0012-821X(93)90038-B [17] Huang, C.M., Gong, Z.T., 2002. Study on Genesis of Soils Derived from Basalt in Northern Hainan Island Ⅲ. Element Geochemistry. Acta Pedologica Sinica, 39(5): 643-652 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200205004.htm [18] Huang, X.G., Sun, J.M., 2005. Study of the Magnetic Fabrics in Chinese Loess-Paleosols since the Last Interglacial: Implication of the Paleowind Direction. Quaternary Sciences, 25(4): 516-522 (in Chinese with English abstract). http://www.researchgate.net/publication/285494392_Study_of_the_magnetic_fabrics_in_Chinese_loess-paleosols_since_the_last_interglacial_implication_of_the_paleowind_direction_in_Chinese_with_English_abstract [19] Jia, J., Xia, D.S., Wang, B., et al., 2012. Magnetic Investigation of Late Quaternary Loess Deposition, Ili Area, China. Quaternary International, 250: 84-92. doi: 10.1016/j.quaint.2011.06.018 [20] Koch, C.B., Morup, S., Madsen, M.B., et al., 1995. Iron-Containing Weathering Products of Basalt in a Cold, Dry Climate. Chememical Geology, 122(1-4): 109-119. doi: 10.1016/0009-2541(95)00002-4 [21] Kukla, G., 1987. Loess Stratigraphy in Central China. Quaternary Science Reviews, 6(3-4): 191-207, doi: 10.1016/0277-3791(87)90004-7 [22] Kukla, G., Heller, F., Liu, X.M., 1988. Pleistocene Climates in China Dated by Magnetic Susceptibility. Geology, 16(9): 811-814. doi: 10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2 [23] Liu, D.Y., Li, W.R., Qiao, Y.S., et al., 2010. The Periodicity of the Southwest Monsoon Revealed by the Magnetic Susceptibility of the Garzê a Loess-Paleosol Sequence Using EMD Method. Earth Science—Journal of China University of Geosciences, 35(4): 533-541 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.069 [24] Liu, J.F., Guo, Z.T., Hao, Q.Z., et al., 2005. Magnetostratigraphy of the Miziwan Miocene Eolian Deposits in Qin'an County (Gansu Province). Quaternary Sciences, 25(4): 503-509 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DSJJ200504014.htm [25] Liu, X.M., Liu, Z., Lü, B., et al., 2013. The Magnetic Properties of Serbian Loess and Its Environmental Significance. Chinese Science Bulletin, 58(3): 353-363. doi: 10.1007/s11434-012-5383-9 [26] Liu, X.M., Rolph, T., Bloemendal, J., 1995. Quantitative Estimates of Paleoprecipitation at Xifeng, in the Loess Plateau of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 113(2-4): 243-248. doi: 10.1016/0031-0182(95)00053-O [27] Liu, X.M., Xia, D.S., Liu, T.S., et al., 2007. Discussion on Two Models of Paleoclimatic Records of Magnetic Susceptibility of Alaskan and Chinese Loess. Quaternary Sciences, 27(2): 210-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200702005.htm [28] Lu, S.G., Xue, Q.F., Zhu, L., et al., 2008. Mineral Magnetic Properties of a Weathering Sequence of Soils Derived from Basalt in Eastern China. Catena, 73(1): 23-33. doi: 10.1016/j.catena.2007.08.004 [29] Lü, H.Y., Han, J.M., Wu, N.Q., et al., 1994. Magnetic Susceptibility Analysis of Modern Soils in China and Its Paleoclimatic Significance. Science in China(Series B), 24(12): 1290-1297 (in Chinese). http://www.researchgate.net/publication/285766624_Magnetic_susceptibility_of_the_modern_soils_in_China_and_paleoclimatic_significance [30] Lü, H.Y., Liu, D.S., 2001. The Effect of C3 and C4 Plants for the Magnetic Susceptibility Signal in Soils. Science in China (Series D), 31(1): 43-53 (in Chinese). doi: 10.1007/BF02907102 [31] Lyons, R., Oldfield, F., Williams, E., 2012. The Possible Role of Magnetic Measurements in the Discrimination of Sahara/Sahel Dust Sources. Earth Surface Processes and Landforms, 37(6): 594-606. doi: 10.1002/esp.2268 [32] Maher, B.A., 1998. Magnetic Properties of Modern Soils and Quaternary Loessic Paleosols: Paleoclimatic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137: 25-54. doi: 10.1016/s0031-0182(97)00103-x [33] Maher, B.A., 2011. The Magnetic Properties of Quaternary Aeolian Dusts and Sediments, and Their Palaeoclimatic Significance. Aeolian Research, 3(2): 87-144. doi: 10.1016/j.aeolia.2011.01.005 [34] Maher, B.A., Thompson, R., 1995. Paleorainfall Reconstructions from Pedogenic Magnetic Susceptibility Variations in the Chinese Loess and Paleosols. Quaternary Research, 44(3): 383-391. doi: 10.1006/qres.1995.1083 [35] Porter, S.C., Hallet, B., Wu, X.H., et al., 2001. Dependence of Near-Surface Magnetic Susceptibility on Dust Accumulation Rate and Precipitation on the Chinese Loess Plateau. Quaternary Research, 55(3): 271-283. doi: 10.1006/qres.2001.2224 [36] Qiao, Y.S., Zhao, Z.Z., Wang, Y., et al., 2006. Magnetostratigraphy and Its Paleoclimatic Significance of a Loess-Soil Sequence from Ganzi Area, West Sichuan Plateau. Quaternary Sciences, 26(2): 250-256 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dsjyj200602013 [37] Rao, Z.G., Zhu, Z.Y., Wu, Y., et al., 2007. Magnetic Susceptibility Characteristics of Topsoil Developed from Different Parent Rocks and Its Significance, South China. Quaternary Sciences, 27(4): 651-652 (in Chinese). [38] Shi, P.H., Yang, T.B., Xu, S.Y., et al., 2010. Magnetic Susceptibility Variations and Influence Factors at Jingyuan Loess Section, Northwestern China. Marine Geology & Quaternary Geology, 30(4): 193-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201004032.htm [39] Soubrand-Colin, M., Horen, H., Courtin-Nomade, A., 2009. Mineralogical and Magnetic Characterization of Iron Titanium Oxides in Soils Developed on Two Various Basaltic Rocks under Temperate Climate. Geoderma, 149(1-2): 27-32. doi: 10.1016/j.geoderma.2008.11.018 [40] Sun, D.H., Bloemendal, J., Yi, Z.Y., et al., 2011. Palaeomagnetic and Palaeoenvironmental Study of Two Parallel Sections of Late Cenozoic Strata in the Central Taklimakan Desert: Implications for the Desertification of the Tarim Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 300(1-4): 1-10. doi: 10.1016/j.palaeo.2010.11.015 [41] Sun, D.H., Su, R.X., Chen, F.H., et al., 2001. Composition, Susceptibility and Input Flux of Present Aeolian Dust over Loess Plateau of China. Acta Geographica Sinica, 56(2): 171-180 (in Chinese with English abstract). http://www.researchgate.net/publication/294657430_Composition_susceptibility_and_input_flux_of_present_aeolian_dust_over_loess_plateau_of_China [42] Sun, Y.B., An, Z.S., Clemens, S.C., et al., 2010. Seven Million Years of Wind and Precipitation Variability on the Chinese Loess Plateau. Earth and Planetary Science Letters, 297(3-4): 525-535. doi: 10.1016/j.epsl.2010.07.004 [43] Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen & Imwin, London. [44] Verosub, K.L., Roberts, A.P., 1995. Environmental Magnetism: Past, Present, and Future. Journal of Geophysical Research, 100(B2): 2175-2192. doi: 10.1029/94JB02713 [45] Wang, L.X., Wang, W.G., Li, X.Q., et al., 2005. Correlation between the Carbon Isotope of Organic Matter and Magnetic Susceptibility in Topsoil and the Annual Precipitation in Arid and Semiarid Regions in North China. Arid Land Geography, 28(3): 311-315 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHDL200503008.htm [46] Warrier, A.K., Sandeep, K., Harshavardhana, B.G., et al., 2011. A Rock Magnetic Record of Pleistocene Rainfall Variations at the Paleolithic Site of Attirampakkam, Southeastern India. Journal of Archaeological Science, 38(12): 3681-3693. doi: 10.1016/j.jas.2011.08.039 [47] Wei, H.T., Xia, D.S., Chen, F.H., et al., 2008. Relationship between the Magnetic Susceptibility of Surface Soil and Precipitation of Loess Plateau and Adjacent Area. Journal of Glaciology and Geocryology, 30(3): 433-439 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/bcdt200803012 [48] Xie, S.Y., Jiao, Y., Yan, M., et al., 2012. Geochemical Vertical Transportation along Soil Profiles in Baiyinnuoer Pb-Zn Deposit Areas, Mongolia, China. Earth Science—Journal of China University of Geosciences, 37(6): 1140-1148 (in Chinese with English abstract). [49] Yang, T., 2008. Geochemical Characteristics of Topsoil and Weathering Crust from East China and Its Environmental Significance (Dissertation). Guangzhou Institute of Geochemistry, Guangzhou (in Chinese with English abstract). [50] Yin, Q.Z., Guo, Z.T., 2006. Mid-Pleistocene Vermiculated Red Soils in Southern China as an Indication of Unusually Strengthened East Asian Monsoon. Chinese Science Bulletin, 51(2): 213-220. doi: 10.1007/s11434-005-0490-5 [51] Zhang, Y.F., Li, C.A., Chen, G.J., et al., 2005. Characteristics and Paleoclimatic Significance of Magnetic Susceptibility and Stable Organic Carbon Isotopes from a Bore in Zhoulao Town, Jianghan Plain. Earth Science—Journal of China University of Geosciences, 30(1): 114-120 (in Chinese with English abstract). http://www.researchgate.net/publication/279655329_Characteristics_and_paleoclimatic_significance_of_magnetic_susceptibility_and_stable_organic_carbon_isotopes_from_a_bore_in_Zhoulao_town_Jianghan_plain [52] Zhou, L.P., Oldfield, F., Wintle, A.G., et al., 1990. Partly Pedogenic Origin of Magnetic Variations in Chinese Loess. Nature, 346(6286): 737-739. doi: 10.1038/346737a0 [53] 邓成龙, 刘青松, 潘永信, 等, 2007. 中国黄土环境磁学. 第四纪研究, 27(2): 193-209. doi: 10.3321/j.issn:1001-7410.2007.02.005 [54] 邓少福, 杨太保, 秦宏毅, 等, 2011. 新疆塔城黄土-古土黄土-古土壤磁化率特征及其影响因素. 中国沙漠, 31(4): 848-854. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201104008.htm [55] 韩家懋, 姜文英, 褚骏, 1997. 黄土和古土壤中磁性矿物的粒度分布. 第四纪研究, 3: 281-827. doi: 10.3321/j.issn:1001-7410.1997.03.011 [56] 黄成敏, 龚子同, 2002. 海南岛北部玄武岩上土壤发生研究Ⅲ. 元素地球化学特征. 土壤学报, 39(5): 643-652. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200204000.htm [57] 黄孝刚, 孙继敏, 2005. 末次间冰期以来黄土-古土壤序列的磁组构特征及其指示的古风向. 第四纪研究, 25(4): 516-522. doi: 10.3321/j.issn:1001-7410.2005.04.016 [58] 刘冬雁, 李巍然, 乔彦松, 等, 2010. 基于EMD分解的甘孜黄土磁化率记录的西南季风演化周期性. 地球科学——中国地质大学学报, 35(4): 533-541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004007.htm [59] 刘进峰, 郭正堂, 郝青振, 等, 2005. 甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究. 第四纪研究, 25(4): 503-509. doi: 10.3321/j.issn:1001-7410.2005.04.014 [60] 刘秀铭, 夏敦胜, 刘东生, 等, 2007. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨. 第四纪研究, 27(2): 210-220. doi: 10.3321/j.issn:1001-7410.2007.02.006 [61] 吕厚远, 韩家懋, 吴乃琴, 等, 1994. 中国现代土壤磁化率分析及其古气候意义. 中国科学(B辑), 24(12): 1290-1297. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199412009.htm [62] 吕厚远, 刘东生, 2001. C3, C4植物及燃烧对土壤磁化率的影响. 中国科学(D辑), 31(1): 43-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXG200310010.htm [63] 乔彦松, 赵志中, 王燕, 等, 2006. 川西甘孜黄土磁性地层学研究及其古气候意义. 第四纪研究, 26(2): 250-256. doi: 10.3321/j.issn:1001-7410.2006.02.013 [64] 饶志国, 朱照宇, 吴翼, 等, 2007. 华南地区发育于不同母岩之上的表土磁化率特征及其意义. 第四纪研究, 27(4): 651-652. doi: 10.3321/j.issn:1001-7410.2007.04.022 [65] 石培宏, 杨太保, 许善洋, 等, 2010. 靖远黄土-古土黄土-古土壤上部磁化率变化及其影响因素. 海洋地质与第四纪地质, 30(4): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201004032.htm [66] 孙东怀, 苏瑞侠, 陈发虎, 等, 2001. 黄土高原现代天然降尘的组成、通量和磁化率. 地理学报, 56(2): 171-180. doi: 10.3321/j.issn:0375-5444.2001.02.005 [67] 王丽霞, 汪卫国, 李心清, 等, 2005. 中国北方干旱半干旱区表土的有机质碳同位素磁化率与年降水量的关系. 干旱区地理, 28(3): 311-315. doi: 10.3321/j.issn:1000-6060.2005.03.008 [68] 魏海涛, 夏敦胜, 陈发虎, 等, 2008. 黄土高原及相邻地区表土磁化率与降水量的关系. 冰川冻土, 30(3): 433-439. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200803011.htm [69] 谢淑云, 焦杨, 燕敏, 等, 2012. 白音诺尔矿区土壤地球化学纵向迁移特征. 地球科学——中国地质大学学报, 37(6): 1140-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206008.htm [70] 杨恬, 2008. 中国东部表土与风化壳地球化学特征及其环境意义(博士学位论文), 广州: 中国科学院广州地球化学研究所, 29-83. [71] 张玉芬, 李长安, 陈国金, 等, 2005. 江汉平原湖区周老镇钻孔磁化率和有机碳稳定同位素特征及其古气候意义. 地球科学——中国地质大学学报, 30(1): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501016.htm