Zoning of Mountain Torrent Hazards in Medium-Small River Basins
-
摘要: 山洪危险性区域划分是一种行之有效的防洪减灾非工程措施,是防洪减灾体系中的重要组成部分.利用GIS技术和模糊数学方法建立山洪危险性评价模型;从山洪危险性定义出发,利用正交设计方法,考察降雨量和单位面积汇流时间等对山洪影响的敏感性,确定了合理的山洪危险性评价指标体系并结合层次分析法确定了评价指标权重.选择淮河上游息县流域进行了实证应用分析,对研究区域山洪危险性空间分布进行划分.研究结果表明:单位面积汇流时间短、地势起伏较大的地区是山洪危险性较大的区域,需要加强防治.Abstract: As one of the effective non-engineering measurements, zoning of mountain torrent hazards is an important part of flood prevention and disaster mitigation system. A torrent hazard evaluation model is built by using GIS spatial analysis and modeling techniques and fuzzy mathematics method in this paper, in which the evaluation index weight is determined with analytic hierarchy process according to the results of orthogonal analysis. In addition, seven factors are chosen as the new evaluation index system to evaluate the torrent hazards, combined with the definition of mountain torrent hazard and the analysis of factors causing mountain torrent disaster, with the application of orthogonal design method, and the observed influence degree of rainfall and conflux time on mountain torrent. The areas of the upper reach of the Huaihe River were chosen as the case study area of mountain torrent hazards zonation. The results show that areas with the shortest confluence time and the largest hypsographic feature are the most dangerous areas.
-
Key words:
- flood damage /
- evaluation model /
- hazard analysis /
- orthogonal design /
- hydrogeology
-
表 1 评价指标数据层的间隔点设置
Table 1. The interval of evaluation index
评价指标 D1 D2 D3 D4 D5 20年一遇年最大6 h降雨量(mm) 74 84 94 104 114 20年一遇年最大1 h降雨量(mm) 23 38 53 68 83 植被覆盖(取倒) 1.23 1.37 1.51 1.65 1.79 河网密度(m·m-2) 0.001 8 0.002 9 0.004 0 0.005 1 0.006 2 高程标准差(m) 7.34 14.62 21.90 29.18 36.46 土壤类型指数 1 2 3 4 5 前期土壤含水量(%) 20 40 60 80 100 单位面积汇流时间(取倒数)(km2·h-1) 178.57 196.42 214.27 232.12 249.97 注:D1,D2,D3,D4和D5为各评价指标间隔设置;前期土壤含水量为土壤实际水分含量占田间持水量的百分比. 表 2 因素水平
Table 2. The factor level
水平 A(mm) B(km2·h-1) C(m) 1 1 h降雨量 无 无 2 6 h降雨量 计算值 实际值 注:因素A,B和C分别为降雨量、单位面积汇流时间(取倒数)和高程标准差,且因素B和C的第一个水平“无”表示评价时不考虑该指标. 表 3 正交设计结果及分析
Table 3. The results and analysis of orthogonal design
方案/其他 A(mm) B(km2·h-1) C(m) 评价结果 1 1 h 无 无 2 2 1 h 计算值 实际值 4 3 6 h 无 实际值 4 4 6 h 计算值 无 3 K1 6 6 5 K2 7 7 8 k1 3 3 2.5 k2 3.5 3.5 4.0 极差 0.5 0.5 1.5 最优方案 A2 B2 C2 注:1、2、3、4为4种方案的编号,因素A,B和C含义同表 2,A2表示降雨量的第2个水平,即6 h降雨量,B2,C2含义类似;因素主次顺序为C、A、B. -
[1] Creutin, J.D., Borga, M., 2003. Radar Hydrology Modifies the Monitoring of Flash-Flood Hazard. Hydrological Processes, 17(7): 1453-1456. doi: 10.1002/hyp.5122 [2] Furdada, G., Calderón, L.E., Marqués, M.A., 2008. Flood Hazard Map of La Trinidad (NW Nicaragua). Method and Results. Natural Hazards, 45(2): 183-195. doi: 10.1007/s11069-007-9156-8 [3] Georgakakos, K.P., 2006. Analytical Results for Operational Flash Flood Guidance. Journal of Hydrology, 317(1-2): 81-103. doi: 10.1016/j.jhydrol.2005.05.009 [4] Ghoneim, E., Foody, G.M., 2011. Assessing Flash Flood Hazard in an Arid Mountainous Region. Arabian Journal of Geosciences, 29(9): 505-514. doi: 10.1007/s12517-011-0411-7 [5] Guan, M., Chen, X.W., 2007. Research of Regional Torrent Risk Zonation in Jiangxi Province. Torrential Rain and Disasters, 26(4): 339-343 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBQX200704010.htm [6] He, B.Y., Zhang, H.L., Zhang, S., et al., 2002. GIS-Based Risk Evaluation for Flood Disaster in Hubei Province. Journal of Natural Disasters, 11(4): 84-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200204014.htm [7] Hu, J.C., Wan, F.J., Wu, Z.Q., 1998. Application of Fuzzy Mathematics. Press of Wuhan Technical University of Surveying and Mapping, Wuhan, 20-187 (in Chinese). [8] Huang, S.F., Xu, M., Chen, D.Q., 2001. GIS-Based Extraction of Drainage Network Density and It's Application to Flood Hazard Analysis. Journal of Natural Disasters, 10(4): 129-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200104025.htm [9] Islam, M.M., Sado, K., 2000. Development of Flood Hazard Maps of Bangladesh Using NOAA-AVHRR Images with GIS. Hydrological Sciences Journal, 45(3): 337-355. doi: 10.1080/02626660009492334 [10] Jiang, W.G., Li, J., Li, Z.W., et al., 2008. Fuzzy Assessment of the Population Risk of Flood Disaster. Journal of Hunan University (Natural Sciences), 35(9): 84-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDX200809021.htm [11] Jiang, W.G., Li, J., Wu, J.J., et al., 2008. Risk Assessment System for Regional Flood Disaster(Ⅱ) : Model and Application. Journal of Natural Disasters, 17(6): 105-109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200806023.htm [12] Li, L.T., Xu, Z.X., Pang, B., et al., 2012. Flood Risk Zoning in China. Journal of Hydraulic Engineering, 43(1): 22-30(in Chinese with English abstract). http://research.vu.nl/en/publications/flood-risk-zoning-in-china [13] Li, Y.T., 2008. Study on Evaluation of Precision and Hydrologic Simulation in Ungauged River Basins Based on TRMM Satellite Precipitation Product(Dissertation). Hohai University, Nanjing, 22 (in Chinese with English abstract) [14] Nayak, P.C., Sudheer, K.P., Ramasastri, K.S., 2005. Fuzzy Computing Based Rainfall-Runoff Model for Real Time Flood Forecasting. Hydrological Processes, 19(4): 955-968. doi: 10.1002/hyp.5553 [15] Ni, H., Liu, Y.R., Long, Z.G., 2002. Application of Orthogonal Design to Sensitivity Analysis of Landslide. Chinese Journal of Rock Mechanics and Engineering, 21(7): 989-992 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200207010 [16] Sanyal, J., Lu, X.X., 2005. Remote Sensing and GIS Based Flood Vulnerability Assessment of Human Settlements: A Case Study of Gangetic West Bengal, India. Hydrological Processes, 19(18): 3699-3716. doi: 10.1002/hyp.5852 [17] Sinha, R., Bapalu, G.V., Singh, L.K., et al., 2008. Flood Risk Analysis in the Kosi River Basin, North Bihar Using Multi-Parametric Approach of Analytical Hierarchy Process (AHP). Journal of the Indian Society of Remote Sensing, 36(4): 335-349. doi: 10.1007/s12524-008-0034-y [18] Tang, C., Zhu, J., 2005. A GIS Based Regional Torrent Risk Zonation. Acta Geographica Sinica, 60(1): 87-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB200501009.htm [19] Wang, X.Z., Shi, W.Z., Wang, S.L., 2003. Treatment of Fuzzy Space Information. Wuhan University Press, Wuhan (in Chinese). [20] Water Resources Information Center of the Ministry of Water Resources, 2008. Water Year Book of PRC: Hydrological Data of Huaihe River. Water Resources Information Center of the Ministry of Water Resources, Beijing, 60-104 (in Chinese). [21] Wei, Y.M., Jin, J.L., Yang, C.J., et al., 2002. Theoretics of Flood Disaster Risk Management. Science Press, Beijing, 64-125 (in Chinese). [22] Wen, K.G., Pan, T.H., 2005. China Meteorological Disaster Authority (Henan Volume). China Meteorological Press, Beijing, 163-232 (in Chinese). [23] Xie, S., 2007. Study on the Hazard Mapping and Risk Management of the Small Watershed Torrents(Dissertation). Zhejiang University, Hangzhou, 18-27 (in Chinese with English abstract). [24] Zhou, C.H., Wan, Q., Huang, S.F., et al., 2000. A GIS-Based Approach to Flood Risk Zonation. Acta Geographica Sinica, 55(1): 15-24 (in Chinese with English abstract). http://www.researchgate.net/publication/280017918_A_GIS-based_approach_to_flood_risk_zonation [25] 管珉, 陈兴旺, 2007. 江西省山洪灾害风险区划初步研究. 暴雨灾害, 26(4): 339-343. doi: 10.3969/j.issn.1004-9045.2007.04.011 [26] 何报寅, 张海林, 张穗, 等, 2002. 基于GIS的湖北省洪水灾害危险性评价. 自然灾害学报, 11(4): 84-89. doi: 10.3969/j.issn.1004-4574.2002.04.014 [27] 胡继才, 万福钧, 吴珍权, 1998. 应用模糊数学. 武汉: 武汉测绘科技大学出版社, 20-187. [28] 黄诗峰, 徐美, 陈德清, 2001. GIS支持下的河网密度提取及其在洪水危险性分析中的应用. 自然灾害学报, 10(4): 129-132. doi: 10.3969/j.issn.1004-4574.2001.04.024 [29] 蒋卫国, 李京, 李忠武, 等, 2008. 洪水灾害人口风险模糊评价. 湖南大学学报(自然科学版), 35(9): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX200809021.htm [30] 蒋卫国, 李京, 武建军, 等, 2008. 区域洪水灾害评估体系(Ⅱ)——模型与应用. 自然灾害学报, 17(6): 105-109. doi: 10.3969/j.issn.1004-4574.2008.06.022 [31] 李林涛, 徐宗学, 庞博, 等, 2012. 中国洪灾风险区划研究. 水利学报, 43(1): 22-30 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201007.htm [32] 李永涛, 2008. TRMM卫星测雨产品精度评价及其在无资料地区水文模拟中的应用研究(硕士学位论文). 南京: 河海大学, 22. [33] 倪恒, 刘佑荣, 龙治国, 2002. 正交设计在滑坡敏感性分析中的应用. 岩石力学与工程学报, 21(7): 989-992. doi: 10.3321/j.issn:1000-6915.2002.07.010 [34] 唐川, 朱静, 2005. 基于GIS的山洪灾害风险区划. 地理学报, 60(1): 87-94. doi: 10.3321/j.issn:0375-5444.2005.01.010 [35] 王新洲, 史文中, 王树良, 2003. 模糊空间信息处理. 武汉: 武汉大学出版社. [36] 中华人民共和国水利部水文局. 2008. 中华人民共和国水文年鉴: 淮河流域水文资料. 北京: 中华人民共和国水利部水文局, 60-104. [37] 魏一鸣, 金菊良, 杨存建, 等, 2002. 洪水灾害风险管理理论. 北京: 科学出版社. [38] 温克刚, 庞天荷, 编, 2005. 中国气象灾害大典: 河南卷. 北京: 气象出版社, 163-232. [39] 谢圣, 2007. 小流域山洪风险图及风险管理研究(硕士学位论文). 杭州: 浙江大学, 18-27. [40] 周成虎, 万庆, 黄诗峰, 等, 2000. 基于GIS的洪水灾害风险区划研究. 地理学报, 55(1): 15-24. doi: 10.3321/j.issn:0375-5444.2000.01.003