Pore Characteristics of Sliding Zone Soils of Huangtupo Landslide by Vacuum Freeze-Dried and Dried Methods
-
摘要: 采用水蒸气吸附法和恒速压汞法测定了三峡库区巴东县黄土坡滑坡Ⅰ号支洞滑带土在真空冷冻干燥和烘干状态下的孔隙特征.研究表明,滑带土烘干样中墨水瓶形孔道内水分子发生凝聚、堵塞,导致其比表面积和吸附水蒸气的能力均小于滑带土冻干样.滑带土烘干样失水收缩,团粒结构更紧密,滑带土吸附势减小,在微孔区间其累积孔隙体积和最大孔隙体积均小于滑带土冻干样.在考虑水蒸气表面张力情况下,滑带土冻干样吸附和脱附的孔隙表面分形维数均大于烘干样,说明烘干样失水后在各种化学键引力作用下使孔隙表面更趋于平滑.压汞实验结果表明在微孔和中孔区间,冻干滑带土的孔隙直径和孔隙体积均大于烘干样,但孔隙直径在0.133~129.051 μm区间,烘干样的孔隙体积大于冻干样,且直径大于41.421 μm的颗粒体积比冻干样大.Abstract: The pore characteristics of sliding zone soils, treated with vacuum freeze-drying and drying methods, respectively, are studied using water adsorption and constant-rate mercury injection porosimetry in branch tunnel Ⅰ of Huangtupo landslide located in Three Gorges Reservoir. It is found that the condensation and congestion function of water vapor in the ink bottle pore of dried sample lead to smaller specific surface area and weaker water vapor adsorption ability than those of the freeze-dried sample. The shrinkage functions and weaker adsorption potential in the dried sample make the granular structure closer, which in turn leads to smaller cumulative pore volume and maximum pore volume than those of freeze-dried sample. Considering the water vapor surface tension, the pore surface fractal dimension of freeze-dried sample is greater than that of the dried samples, which indicates that the pore surface of dried samples becomes smoother with a variety of chemical bonds. The mercury intrusion porosimetry results show that the pore diameter and pore volume of freeze-dried sample are greater than those of the dried samples in the range of micropore and mesopore. But in the pore diameter range of 0.133-129.051 μm, the pore volume of freeze-dried sample is greater than that of the dried samples. The particle volume of dried sample with diameter greater than 41.421 μm is bigger than that of the freeze-dried samples.
-
表 1 滑带土基本性质指标
Table 1. Basic index of sliding zone soils in branch tunnelⅠof Huangtupo landslide
天然含水率(%) 密度(g·cm-3) 饱和度(%) 液限(%) 塑限(%) 塑性指数 11~14 2.32 83.5 28.38 17.12 11.26 表 2 黄土坡滑坡Ⅰ支洞滑带土的矿物组成(%)
Table 2. Mineral composition of sliding zone soils in branch tunnel Ⅰ of Huangtupo landslide (%)
矿物成分 石英 长石 方解石 蒙脱石 绿泥石 伊利石 滑带土 26 4 30 10 4 26 表 3 黄土坡滑坡Ⅰ支洞滑带土的化学全量分析结果(%)
Table 3. Chemical component of sliding zone soils in branch tunnel Ⅰ of Huangtupo landslide (%)
氧化物 SiO2 Al2O3 Fe2O3 MgO CaO Na2O 滑带土 41.25 11.00 4.16 1.51 18.54 0.15 氧化物 K2O TiO2 P2O5 MnO H2O 烧失量 滑带土 2.24 0.53 0.10 0.04 2.80 20.48 表 4 黄土坡滑坡Ⅰ支洞滑带土的易溶盐(g/kg)
Table 4. Soluble salt of sliding zone soils in branch tunnel Ⅰ of Huangtupo landslide (g/kg)
易溶盐 pH值 HCO3- Cl- SO42- Ca2+ Mg2+ K++Na+ 易溶盐总量 滑带土 6.36 0.366 0.014 0.048 0.076 0.015 0.060 0.579 表 5 滑带土冻干样与烘干样的表面分形维数
Table 5. Fractal dimension of dried and freeze-dried sliding zone soils
样品名称 吸附/脱附阶段 考虑吸附质表面张力 相关系数 冻干样 脱附 2.871 7 0.986 吸附 2.841 6 0.857 烘干样 脱附 2.861 5 0.910 吸附 2.827 7 0.936 表 6 恒速压汞实验结果
Table 6. Data of constant-rate mercury injection
样品名称 重量(g) 压力范围(kPa) 孔隙直径(nm) 孔隙体积(10-3 L·g-1) 比表面积(m2·g-1) 滑带土冻干样 0.486 6 6.247~204 916.122 235 338.59~7.18 0.105 7 15.638 6 滑带土烘干样 0.799 4 6.267~204 779.881 234 692.59~7.18 0.114 0 13.981 9 -
[1] Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309-319. doi: 10.1021/ja01269a023 [2] Cui, D.S., Xiang, W., 2010. Pore Diameter Distribution Test of Red Clay Treated with ISS. Rock and Soil Mechanics, 31(10): 3096-3100 (in Chinese with English abstract). http://www.researchgate.net/publication/290250123_Pore_diameter_distribution_test_of_red_clay_treated_with_ISS [3] Guo, F., Xu, S.H., Liu, J.L., 2005. Characteristics of Pore Profile Fractal Dimension of Soil Images and Its Application. Transactions of the CSAE, 21(7): 6-10 (in Chinese with English abstract). http://www.researchgate.net/publication/295576550_Characteristics_of_pore_profile_fractal_dimension_of_soil_images_and_its_application [4] Liu, Z.B., Shi, B., Wang, B.J., 2004. Quantitative Research on Micropores of Modified Expansive Soils. Chinese Journal of Geotechnical Engineering, 26(4): 526-530 (in Chinese with English abstract). http://www.researchgate.net/publication/296609954_Quantitative_research_on_micropores_of_modified_expansive_soils [5] Lü, H.B., Zhao, Y.L., Kong, L.W., et al., 2005. Determining Parameters of Damage Model of Soft Soils Using Mercury Intrusion Porosimetry. Chinese Journal of Rock Mechanics and Engineering, 24(5): 854-858 (in Chinese with English abstract). http://www.oalib.com/paper/1484119 [6] Mayer, R.P., Stowe, R.A., 1965. Mercury Porosimetry Breakthrough Pressure for Penetration between Packed Spheres. Journal of Colloid Science, 20(8): 893-911. doi: 10.1016/j.jcis.2004.11.067 [7] Pfeifer, P., Avnir, D., 1983. Chemistry in Noninteger Dimensions between Two and Three. Ⅰ. Fractal Theory of Heterogeneous Surfaces. The Journal of Chemical Physics, 79(7): 3558-3565. doi: 10.1063/1.447307 [8] Sing, K.S.W., Everett, D.H., Haul, R.A.W., et al., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 57(4): 603-619. doi: 10.1351/pac198557040603 [9] Tao, G.L., Zhang, J.R., 2009. Two Categories of Fractal Models of Rock and Soil Expressing Volume and Size-Distribution of Pores and Grains. Chinese Science Bulletin, 54(6): 838-846 (in Chinese). doi: 10.1360/csb2009-54-6-838 [10] Wang, X.Y., Liu, C.L., 2003. New Understanding of the Regularity of Water Seepage in Cohesive Soil. Acta Geoscientia Sinica, 24(1): 91-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB200301015.htm [11] Xiang, W., Cui, D.S., Liu, L., 2007. Experimental Study on Sliding Soil of Ionic Soil Stabilizer-Reinforces. Earth Science—Journal of China University of Geosciences, 32(3): 397-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200703012.htm [12] Xie, H.P., 1992. Fractal Geometry and Its Application to Rock and Soil Materials. Chinese Journal of Geotechnical Engineering, 14(1): 14-24 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTGC199201001.htm [13] Xie, H.P., 1993. Fractal Pores and Fractal Particles of Rock and Soil Materials. Advances in Mechanics, 23(2): 145-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ199302000.htm [14] 崔德山, 项伟, 2010. ISS加固红色黏土的孔隙分布试验研究. 岩土力学, 31(10): 3096-3100. doi: 10.3969/j.issn.1000-7598.2010.10.011 [15] 郭飞, 徐绍辉, 刘建立, 2005. 土壤图像孔隙轮廓线分形特征及其应用. 农业工程学报, 21(7): 6-10. doi: 10.3321/j.issn:1002-6819.2005.07.002 [16] 刘志彬, 施斌, 王宝军, 2004. 改性膨胀土微观孔隙定量研究. 岩土工程学报, 26(4): 526-530. doi: 10.3321/j.issn:1000-4548.2004.04.020 [17] 吕海波, 赵艳林, 孔令伟, 等, 2005. 利用压汞试验确定软土结构性损伤模型参数. 岩石力学与工程学报, 24(5): 854-858. doi: 10.3321/j.issn:1000-6915.2005.05.021 [18] 陶高梁, 张季如, 2009. 表征孔隙及颗粒体积与尺度分布的两类岩土体分形模型. 科学通报, 54(6): 838-846. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200906034.htm [19] 王秀艳, 刘长礼, 2003. 对粘性土孔隙水渗流规律本质的新认识. 地球学报, 24(1): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200301015.htm [20] 项伟, 崔德山, 刘莉, 2007. 离子土固化剂加固滑坡滑带土的试验研究. 地球科学——中国地质大学学报, 32(3): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703012.htm [21] 谢和平, 1992. 分形几何及其在岩土力学中的应用. 岩土工程学报, 14(1): 14-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199201001.htm [22] 谢和平, 1993. 岩土介质的分形孔隙和分形粒子. 力学进展, 23(2): 145-164. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199302000.htm