Authigenic Lepidocrocite and Greigite Particles inAquatic Environments off the Yangtze River Estuary
-
摘要: 以2010年11月“长江口及东海海洋综合考察”的基金委公共航次期间采集的长江口外不同站位的水体悬浮体颗粒为对象,使用扫描电镜和能谱仪相结合的方法对其进行了系统观察和研究,发现了铁氧化物和铁硫化物两种自生矿物集合体.铁氧化物集合体由纤铁矿微晶构成,形态不规则;铁硫化物集合体由大小均一的胶黄铁矿微晶构成,呈莓球状.纤铁矿的形成与周围水体的物理化学条件相关,而胶黄铁矿的形成则与有机质包裹的局部微环境有关.水体中所形成的两类自生铁矿物沉降到海底后,会受到底质物理化学条件的制约.本研究表明陆架泥质沉积体中的一部分莓球状铁硫化物属于水体沉积成因,当利用沉积物中黄铁矿莓球体进行环境分析时,需要充分考虑该部分自生铁硫化物的影响.Abstract: A scanning electron micrometer with energy-dispersive X-ray analytical system is used to investigate the suspended particles collected in 2010 in aquatic environments off the Yangtze River estuary in this study. The results show that iron oxide and iron sulfide co-exist in the same environment. Iron oxide is lepidocrocite, which accumulates in porously irregular aggregates. Iron sulfide is greigite and aggregates into organized framboids. The greigite framboids are enclosed by organic films. Lepidocrocite is in agreement with the environmental conditions. Meanwhile, greigite only exists at a local patch covered with organic films. Both lepidocrocite and greigite particles settle down easily, but their preservation depends on the early diagenesis conditions. It is suggested that at least a minor part of the iron sulfide framboids commonly found in the sedimentary sequences perhaps originates from their upward aquatic environment.
-
Key words:
- the Yangtze River estuary /
- suspended particle matter /
- authigenic mineral /
- lepidocrocite /
- greigite /
- sedimentology /
- geochemistry
-
图 3 悬浮颗粒中的铁硫化物莓球状集合体及其能谱图
a, b, c.发育良好的莓球状集合体及其能谱图,硫化物微晶清晰、数量多、呈半有序排列, 能谱图中元素组成以Fe、S为主, 见于DH3-4站底层; d, e, f.莓球状集合体及其能谱图,硫化物微晶较多、呈无序排列, 能谱图中元素组成以Fe、S为主, 见于DH3-6站中层; g, h, i.莓球状集合体及其能谱图,硫化物微晶数量较多、呈无序排列, 能谱图出现了Fe、S等元素, 见于DH3-5站表层; j, k, l.莓球状集合体及其能谱图,硫化物微晶数量少、形态清晰、呈无序排列, 能谱图出现了Fe、S等元素, 见于DH3-3站表层
Fig. 3. SEM images of the iron sulfide framboids ang their energy dispersive X-ray patterns
-
[1] Chen, C.C., Gong, G.C., Shiah, F.K., 2007. Hypoxia in the East China Sea: One of the Largest Coastal Low-Oxygen Areas in the World. Marine Environmental Research, 64(4): 399-408. doi: 10.1016/j.marenvres.2007.01007 [2] Chu, F.Y., Chen, L.R., Shen, S.X., et al., 1994. Morphological Features of Authigenic Pyrite from South Yellow Sea Sediments. Oceanologia et Lomnologica Sinica, 25(5): 461-467 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ199405000.htm [3] Chu, F.Y., Chen, L.R., Shen, S.X., et al., 1995. Origin and Environmental Significance of Authigenic Pyrite from the South Yellow (Huanghai) Sea Sediments. Oceanologia et Lomnologica Sinica, 26(3): 227-233 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=1765576 [4] Dai, M.H., Martin, J.M., 1995. First Data on Trace Metal Level and Behavior in Two Major Arctic River Estuarine Systems(Ob and Yenisey) and in the Adjacent Kara Sea, Russia. Earth Planet. Sci. Lett., 131(3-4): 127-141. doi: 10.1016/S0012-821X(95)00021-6 [5] Eisma, D., 1993. Suspended Matter in the Aquatic Environment. Springer-Verlag, Berlin, 131-163. [6] Fan, D.J., Neuser, R.D., Sun, X.G., et al., 2008. Authigenic Iron Oxide Formation in the Estuarine Mixing Zone of the Yangtze River. Geo-Mar. Lett., 28(1): 7-14. doi: 10.1007/s00367-007-0084-0 [7] Halbach, P., 1986. Process Controlling the Heavy Metal Distribution in Pacific Ferromanganese Nodules and Crusts. Geol. Rundsch., 75(1): 235-247. doi: 10.1007/BF01770191 [8] Jung, H.S., Lee, C.B., 1999. Growth of Diagenetic Ferromanganese Nodules in an Oxic Deep-Sea Sedimentary Environment, Northeast Equatorial Pacific. Marine Geology, 157(3-4): 127-144. doi:org/10.1016/s0025-3227(98)00154-6 [9] Lee, S.H., Lee, I., Roh, Y., 2003. Biomineralization of a Poorly Crystalline Fe(Ⅲ) Oxide, Akaganeite, by an Anaerobic Fe(Ⅲ)-Reducing Bacterium (Shewanella Alga) Isolated from Marine Environment. Geosciences Journal, 7(3): 217-226. doi: 10.1007/BF02910288 [10] Leng, Q., Yang, H., 2003. Pyrite Framboids Associated with the Mesozoic Jehol Biota in Northeastern China: Implications for Microenvironment during Early Fossilization. Progress in Natural Science, 13(3): 206-212. doi:10.1080/1002007031233134 3410 [11] Li, D.J., Zhang, J., Huang, D.J., et al., 2002. Oxygen Depletion off the Changjiang (Yangtze River) Estuary. Science in China(Series D), 45(12): 1137-1146. doi: 10.1360/02yd9110 [12] Li, G.X., Yang, Z.G., Liu, Y., 2005. Study on the Origins of Sediment Environments in the East China Seas. Science Press, Beijing, 1-76 (in Chinese). [13] Lu, H.F., Chen, F., Liao, Z.L., et al., 2007. Authigenic Pyrite Rods from the Core HD196A in the Northeastern China Sea. Acta Geologica Sinica, 81(4): 519-525 (in Chinese with English abstract). http://www.researchgate.net/publication/283868226_Authigenic_pyrite_rods_from_the_core_HD196A_in_the_northeastern_South_China_Sea [14] Morse, J.W., Wang, Q.W., 1997. Pyrite Formation under Conditions Approximating Those in Anoxic Sediments: Ⅱ. Influence of Precursor Iron Minerals and Organic. Marine Chemistry, 57(3-4): 187-193. doi: 10.1016/S0304-4203(97)00050-9 [15] Ohfuji, H., Richard, D., 2005. Experimental Syntheses of Framboids—A Review. Earth-Science Reviews, 71(3-4): 147-170. doi: 10.1016/j.earscirev.2005.02.001 [16] Ouddane, B., Skiker, M., Fischer, J.C., et al., 1999. Distribution of Iron and Manganese in the Seine River Estuary: Approach with Experimental Laboratory Mixing. J. Environ. Monit., 1(5): 489-496. doi: 10.1039/A903721G [17] Pósfai, M., Dunin-Borkowski, R.E., 2006. Sulfides in Biosystems. Reviews in Mineralogy & Geochemistry, 61(1): 679-714. doi: 10.2138/rmg.2006.61.13 [18] Qi, H.Y., Fan, D.J., Xu, L., et al., 2008. The States of pH, Eh in Surface Sediments of the Yangtze River Estuary and Its Adjacent Areas and Their Controlling Factors. Acta Sedimentologica Sinica, 26(5): 820-827 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200805017.htm [19] Shao, H.B., Fan, D.J., Zhang, J., et al., 2012. Distribution and Influencing Factors of Suspended Matters and Chlorophyll in Autumn in Yangtze River Estuary Post-Three Gorges Dam. Periodical of Ocean University of China, 42(5): 94-104 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=QDHY201205016&dbcode=CJFD&year=2012&dflag=pdfdown [20] Su, J.L., 1998. Circulation Dynamics of the China Seas North of 18N Coastal Segment. In: Robinson, A.R., Brink, K.H., eds., The Sea, Volume 11, Chapter 16. John Wiley & Sons Inc., New York, 483-505. [21] Wang, Q., Yang, Z.S., 1981. Authigenic Pyrite in the Surface Sediments of the Southern Huanghai Sea. Oceanologia et Lomnologica Sinica, 12(1): 25-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ198101002.htm [22] Wei, H., He, Y.C., Li, Q.J., et al., 2007. Summer Hypoxia Adjacent to the Changjiang Estuary. Journal of Marine Systems, 67(3-4): 292-303. doi: 10.1016/j.jmarsys.2006.04.014 [23] Wilkin, R.T., Arthur, M.A., Dean, W.E., 1997. History of Water-Column Anoxia in the Black Sea Indicated by Pyrite Framboid Size Distributions. Earth and Planetary Science Letters, 148(3-4): 517-525. doi: 10.1016/S0012-821X(97)00053-8 [24] Wilkin, R.T., Barnes, H.L., 1997. Formation Processes of Framboidal Pyrite. Geochimica et Cosmochimica Acta, 61(2): 323-339. doi: 10.1016/S0016-7037(96)00320-1 [25] Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8 [26] Ye, J., Shi, X.F., Yang, Y.M., et al., 2011. Mineralogy of Sulfides from Ultraslow Spreading Southwest Indian Ridge 49.6°E Hydrothermal Field and Its Metallogenic Significance. Acta Mineralogica Sinica, 31(1): 17-29 (in Chinese with English abstract). http://www.researchgate.net/publication/309901070_Mineralogy_of_sulfides_from_ultraslow_spreading_Southwest_Indian_Ridge_49_6_e_hydrothermal_field_and_its_metallogenic_significance [27] 初凤友, 陈丽蓉, 申顺喜, 等, 1994. 南黄海沉积物中自生黄铁矿的形态标型研究. 海洋与湖沼, 25(5): 461-467. doi: 10.3321/j.issn:0029-814X.1994.05.001 [28] 初凤友, 陈丽蓉, 申顺喜, 等, 1995. 南黄海自生黄铁矿成因及其环境指示意义. 海洋与湖沼, 26(3): 227-233. doi: 10.3321/j.issn:0029-814X.1995.03.001 [29] 李广雪, 杨子庚, 刘勇, 2005. 中国东部海域海底沉积环境成因研究. 北京: 科学出版社, 1-76. [30] 陆红锋, 陈芳, 廖志良, 等, 2007. 南海东北部HD196A岩心的自生条带状黄铁矿. 地质学报, 81(4): 519-525. doi: 10.3321/j.issn:0001-5717.2007.04.010 [31] 齐红艳, 范德江, 徐琳, 等, 2008. 长江口及邻近海域表层沉积物pH、Eh分布及制约因素. 沉积学报, 26(5): 820-827. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805017.htm [32] 邵和宾, 范德江, 张晶, 等, 2012. 三峡大坝启用后长江口及邻近海域秋季悬浮体、叶绿素分布特征及影响因素. 中国海洋大学学报, 42(5): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201205016.htm [33] 王琦, 杨作升, 1981. 黄海南部表层沉积物中的自生黄铁矿. 海洋与湖沼, 12(1): 25-32. [34] 叶俊, 石学法, 杨耀民, 等, 2011. 西南印度洋超慢速扩张脊49.6°E热液区硫化物矿物学特征及其意义. 矿物学报, 31(1): 17-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201101004.htm