Magmatic Cu-Ni-PGE Sulfide and Fe-Ti-V Oxide Deposits and Their Relationship to Emeishan Basalt in Permian Emeishan Large IgneousProvince, SW China: A Review
-
摘要: 峨眉山大火成岩省中广泛分布着赋存Fe-Ti-V氧化物矿的层状辉长岩体和赋存Cu-Ni-PGE硫化物矿的镁铁超镁铁岩体,系统归纳并分析了这两类成矿岩浆在控矿因素、岩浆性质、岩浆过程等方面存在的差异.对比Cu-Ni-PGE硫化物矿床和Fe-Ti-V氧化物矿床差异,认为岩浆分异程度、部分熔融程度、挥发分(S和P)以及是否存在地壳混染是造成这两类矿床成矿差异的原因.一系列的矿床实例分析表明高Ti或低Ti性质并不是玄武质岩浆成矿专属性的决定性因素,Fe-Ti-V氧化物矿床和Cu-Ni-PGE硫化物矿床的形成与各自的控矿因素有关.
-
关键词:
- Fe-Ti-V氧化物矿 /
- Cu-Ni-PGE硫化物矿 /
- 控矿因素 /
- 峨眉山玄武岩 /
- 火成岩 /
- 矿床
Abstract: The Late-Middle Permian (about 260 Ma) Emeishan large igneous province in SW China contains two ore-forming magma series, i.e., small ultramafic subvolcanic sills that host magmatic Cu-Ni-PGE sulfide ores and large mafic layered intrusions that host giant Fe-Ti-V oxide deposits. The differences between these two types of ore-forming magma series in the factors controlling mineralization, the nature of magma and magmatic processes, etc., are systematically summarized and analyzed. And the comparisons between Cu-Ni-PGE sulfide-bearing intrusions and Fe-Ti-V oxide-bearing intrusions confirm that Cu-Ni-PGE sulfide mineralization or Fe-Ti-V oxide mineralization depend on the degrees of fractionation crystallization, partial melting, crustal contamination and volatiles (e.g. S and P). The combination of other deposits in the Emeishan large igneous province suggests that the high Ti affinity and low Ti affinity of the Emeishan basalts are not the key factors controlling Cu-Ni-PGE sulfide or Fe-Ti-V oxide mineralization, which are associated with individual factors respectively. -
表 1 2类成矿岩体地质特征对比
Table 1. Comparisons between Cu-Ni-PGE sulfide-bearing intrusions and Fe-Ti-V oxide-bearing intrusions on geological features
Fe-Ti-V氧化物矿岩体 Cu-Ni-PGE硫化物矿岩体 侵位地层 大多数前寒武系,少数志留系 大多数泥盆系、奥陶系,少数前震旦系 岩体出露面积 攀枝花约30 km2,白马约50 km2 金宝山约5 km2,力马河约0.12~0.16 km2,杨柳坪约0.5 km2 辉石种类 单斜辉石 斜方辉石 围岩特征 白云质灰岩、玄武岩 含少量黄铁矿的硅质岩 磷灰石 攀枝花岩体中间带的岩石含5%磷灰石 无 伴生岩体 中酸性岩 无 -
[1] Ai, Y., Zhang, Z.C., Wang, F.S., et al., 2005. The Panzhihua and Xinjie Mafic-Ultramafic Intrusions: The Products of the Closed and Open Magmatic Systems. The Fourth National Academic Seminar of Volcano, Beihai, 1 (in Chinese). [2] Anderson, A.T., 1995. CO2 and the Eruptibility of Picrite and Komatiite. Lithos, 34(1-3): 19-25. doi: 10.1016/0024-4937(95)90005-5 [3] Ariskin, A.A., Barmina, G.S., 1999. An Empirical Model for the Calculation of Spinel-Melt Equilibria in Mafic Igneous Systems at Atmospheric Pressure: 2. Fe-Ti Oxides. Contributions to Mineralogy and Petrology, 134(3): 251-263. doi: 10.1007/s004100050482 [4] Arndt, N., Jenner, G., Ohnenstetter, M., et al., 2005a. Trace Elements in the Merensky Reef and Adjacent Norites Bushveld Complex, South Africa. Mineralium Deposita, 40(5): 550-575. doi: 10.1007/s00126-005-0030-x [5] Arndt, N., Lesher, C.M., Czamanske, G.K., 2005b. Mantle-Derived Magmas and Magmatic Ni-Cu-(PGE) Deposits. Economic Geology, 100th Aniversary Volume, Salt Lake City, 5-23. http://www.researchgate.net/publication/255643533_Mantle-derived_magmas_and_magmatic_Ni-Cu-PGE_deposits [6] Bezmen, N.S., Asif, M., Brugmann, G.E., et al., 1994. Experimental Determinations of Sulfide-Silicate Partitioning of PGE and Au. Geochimica et Cosmochimica Acta, 58: 1251-1260. doi: 10.1016/0016-7037(94)90379-4 [7] Brugmann, G.E., Naldrett, A.J., Asif, M., et al., 1993. Siderophile and Chalcophile Metals as Tracers of the Evolution of the Siberian Trap in the Noril'sk Region, Russia. Geochimica et Cosmochimica Acta, 57(9): 2001-2018. doi: 10.1016/0016-7037(93)90089-F [8] Carroll, M.R., Webster, J.D., 1994. Solubilities of Sulfur, Noble Gases, Nitrogen, Chlorine, and Fluorine in Magmas. Reviews in Mineralogy, 30: 231-279. [9] Fleet, M.E., Crocket, J.H., Stone, W.E., 1996. Partitioning of Platinum-Group Elements (Os, Ir, Ru, Pt, Pd) and Gold between Sulfide Liquid and Basalt Melt. Geochimica et Cosmochimica Acta, 60(13): 2397-2412. doi: 10.1016/0016-7037(96)00100-7 [10] Francis, R.D., 1990. Sulfide Globules in Mid-Ocean Ridge Basalts (MORB) and the Effect of Oxygen Abundance in Fe-S-O Liquids on the Ability of Those Liquids to Partition Metals from MORB and Komatiitic Magmas. Chemical Geology, 85(3-4): 199-213. doi: 10.1016/0009-2541(90)90001-N [11] Ganino, C., Arndt, N.T., Zhou, M.F., et al., 2008. Interaction of Magma with Sedimentary Wall Rock and Magnetite Ore Genesis in the Panzhihua Mafic Intrusion, SW China. Mineralium Deposita, 43(6): 677-694. doi: 10.1007/s00126-008-0191-5 [12] Gorbachev, N.S., Kashirceva, G.A., 1986. Fluid-Magmatic Differentiation of Basaltic Magma and Equilibrium with Magmatic Sulfides. In: Experiments in the Study of Important Problems in Geology. Nauka, Moscow, 98-119. [13] Guan, T., Huang, Z.L., Xu, D.R., et al., 2006. Lithogeochemistry of the Sulfide-Bearing Mafic-Ultramafic Rock at Baimazhai, Jinping, Southern Yunnan. Chinese Journal of Geology, 41(3): 441-454 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200603005.htm [14] Hanski, E.J., 1992. Petrology of the Pechenga Ferropicrites and Cogenetic, Ni-Bearing Gabbro-Wehrlite Intrusions, Kola Peninsula, Russia. Geological Survey of Finland, Bulletin, 367: 192. http://www.researchgate.net/publication/313702212_Petrology_of_the_Pechenga_ferropicrites_and_cogenetic_Ni-bearing_Gabbro-Wehrlite_intrusions_Kola_Peninsula_Russia [15] Haughton, D.R., Roeder, P.L., Skinner, B.J., 1974. Solubility of Sulfur in Mafic Magmas. Economic Geology, 69: 451-467. doi: 10.2113/gsecongeo.69.4.451 [16] Hawkesworth, C.J., Lightfoot, P.C., Fedorenko, V.A., et al., 1995. Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts. Lithos, 34(1-3): 61-88. doi: 10.1016/0024-4937(95)90011-X [17] Hu, R.Z., Tao, Y., Zhong, H., et al., 2005. Mineralization Systems of a Mantle Plume: A Case Study from the Emeishan Igneous Province, Southwest China. Earth Science Frontiers, 12(1): 42-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200501005.htm [18] Hulbert, L.J., Duke, J.M., Eckstrand, O.R., et al., 1988. Geological Environments of the Platinum Group Elements. Geological Survey of Canada, Open File, 1440: 3-99. http://www.researchgate.net/publication/291984664_Geological_environments_of_the_platinum_group_elements [19] Huppert, H.E., Sparks, R.S.J., 1985. Komatiites I: Eruption and Flow. Journal of Petrology, 26(3): 694-725. doi: 10.1093/petrology/26.3.694 [20] Irvine, T.N., 1975, Crystallization Sequences in the Muskox Intrusion and other Layered Intrusions—II. Origin of Chromitite Layers and Similar Deposits of Other Magmatic Ores. Geochimica et Cosmochimica Acta, 39(6-7): 991-1020. doi: 10.1016/0016-7037(75)90043-5 [21] Irvine, T.N., Keith, D.W., Todd, S.G., 1983. The J-M Platinum-Palladium Reef of the Stillwater Complex, Montana: II. Origin by Double-Diffusive Convective Magma Mixing and Implications for the Bushveld Complex. Economic Geology, 78(7): 1287-1334. doi: 10.2113/gsecongeo.78.7.1287 [22] Jugo, P.J., Luth, R.W., Richards, J.P., 2005. An Experimental Study of the Sulfur Content in Basaltic Melts Saturated with Immiscible Sulfide or Sulfate Liquids at 1 300 ℃ and 1.0 GPa. Journal of Petrology, 46(4): 783-798. doi: 10.1093/petrology/egh097 [23] Juster, T.C., Grove, T.L., Perfit, M.R., 1989. Experimental Constraints on the Generation of FeTi Basalts, Andesites, and Rhyodacites at the Galapagos Spreading Centre, 85°W and 95°W. Journal of Geophysical Research, 94(B7): 9251-9274. doi: 10.1029/JB094iB07p09251 [24] Keays, R.R., 1995. The Role of Komatiitic and Picritic Magmatism and S-Saturation in the Formation of Ore Deposits. Lithos, 34(1-3): 1-18. doi: 10.1016/0024-4937(95)90003-9 [25] Kolker, A., 1982. Mineralogy and Geochemistry of Fe-Ti Oxide and Apatite (Nelsonite) Deposits and Evaluation of the Liquid Immiscibility Hypothesis. Economic Geology, 77(5): 1146-1158. doi: 10.2113/gsecongeo.77.5.1146 [26] Lambert, D.D., Foster, J.G., Frick, L.R., et al., 1998. Geodynamics of Magmatic Cu-Ni-PGE Sulfide Deposits: New Insights from the Re-Os Isotopic System. Economic Geology, 93(2): 121-136. doi: 10.2113/gsecongeo.93.2.121 [27] Lesher, C.M., Burnham, O.M., 2001. Multicomponent Elemental and Isotopic Mixing in Ni-Cu-(PGE) Ores at Kambalda, Western Australia. Canadian Mineralogist, 39(2): 421-446. doi: 10.2113/gscanmin.39.2.421 [28] Li, C.S., Maier, W.D., de Waal, S.A., 2001a. Magmatic Ni-Cu versus PGE Deposits: Contrasting Genetic Controls and Exploration Implications. South African Journal of Geology, 104(4): 309-318. doi: 10.2113/gssajg.104.4.309 [29] Li, C.S., Maier, W.D., de Waal, S.A., 2001b. The Role of Magma Mixing in the Genesis of PGE Mineralization in the Bushveld Complex: Thermodynamic Calculation and New Interpretations. Economic Geology, 96(3): 653-662. doi: 10.2113/gsecongeo.96.3.653 [30] Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., et al., 1993. Remobilisation of the Continental Lithosphere by a Mantle Plume: Major-, Trace-Element and Sr-, Nd-, and Pb-Isotope Evidence from Picritic and Tholeiitic Lavas of the Noril'sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology, 114(2): 171-188. doi: 10.1007/BF00307754 [31] Lightfoot, P.C., Keays, R.R., 2005. Siderophile and Chalcophile Metal Variations in Flood Basalts from the Siberian Trap, Noril'sk Region: Implication for the Origin of the Ni-Cu-PGE Sulfide Ores. Economic Geology, 100(3): 439-462. doi: 10.2113/gsecongeo.100.3.439 [32] Lightfoot, P.C., Naldrett, A.J., Gorbachev, N.S., et al., 1990. Geochemistry of the Siberian Trap of the Noril'sk Area, USSR, with Implications for the Relative Contributions of Crustal and Mantle to Flood Basalt Magmatism. Contributions to Mineralogy and Petrology, 104(6): 631-644. doi: 10.1007/BF01167284 [33] Luo, W.J., 2013. Comparisons between Ore-Bearing and Barren Mafic-Ultramafic Intrusions in the Emeishan Large Igneous Province, Southwest China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [34] Luo, W.J., Zhang, Z.C., Hou, T., et al., 2011. Geochronology and Geochemistry of the Cida Complex in the Panxi District: Constraints on the Duration of the Emeishan Mantle Plume. Acta Petrologica Sinica, 27(10): 2947-2962 (in Chinese with English abstract). [35] Luo, Z.H., Marakushev, A.A., Paniakh, H.A., et al., 2000. The Origin of Copper-Nickel Sulfide Deposits—Exemplified by Norilsk (Russia) and Jinchuan (China). Minral Deposits, 19(4): 330-339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200004005.htm [36] Lü, L.S., Wang, Y.F., Li, H.B., et al., 2011. Discussion on the Metallogenesis of Bushveld Magmatic Cu-Ni-PGE Sulphide Deposit in South Africa. Mineral Deposits, 30(6): 1129-1148 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201106014.htm [37] Mavrogenes, J.A., O'Neill, H.S.C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180. doi: 10.1016/S0016-7037(98)00289-0 [38] Mitchell, A.A., Scoon, R.N., 2007. The Merensky Reef at Winnaarshoek, Eastern Bushveld Complex: A Primary Magmatic Hypothesis Based on a Wide Reef Facies. Economic Geology, 102(5): 971-1009. doi: 10.2113/gsecongeo.102.5.971 [39] Mo, X.X., 1985. The Structure of Magmatic Melt. Geological Science and Technology Information, 4(2): 21-31 (in Chinese). [40] Mo, X.X., 1993. Study on the Structure of Magmatic Melt. In: Xiao, Q.H., Li, X.B., Liu, S.C., et al., eds., Contemporary Geological Science Frontiers. China University of Geosciences Press, Wuhan, 270-274 (in Chinese). [41] Naldrett, A.J., 1997. Key Factors in the Genesis of Noril'sk, Sudbury, Jinchuan, Voisey's Bay and Other World-Class Ni-Cu-PGE Deposits: Implications for Exploration. Australian Journal of Earth Sciences, 44(3): 283-315. doi: 10.1080/08120099708728314 [42] Naldrett, A.J., 1999. World-Class Ni-Cu-PGE Deposits: Key Factors in Their Genesis. Mineralium Deposita, 34(3): 227-240. doi: 10.1007/s001260050200 [43] Naldrett, A.J., 2004. Magmatic Sulfide Deposit: Geology, Geochemistry and Exploration. Springer, Berlin, 137 -277, 481-522, 727. [44] Naldrett, A.J., Fedorenko, V., 1995. Ni-Cu-PGE Deposits of the Noril'sk Region, Siberia: Their Formation in Conduits for Flood Basalt Volcanism. Trans. Inst. Mining Metallurgy, Section B Applied Earth Science, 104: B1-B86. http://www.researchgate.net/publication/313622745_Ni-Cu-PGE_deposits_of_the_Noril'sk_region_Siberia_their_formation_in_conduits_for_flood_basalt_volcanism [45] Naldrett, A.J., Gasparrini, E.C., Barnes, S.J., et al., 1986. The Upper Critical Zone of the Bushveld Complex and the Origin of Merensky-Type Ores. Economic Geology, 81(5): 1105-1117. doi: 10.2113/gsecongeo.81.5.1105 [46] Naldrett, A.J., Lightfoot, P.C., Fedorenko, V., et al., 1992. Geology and Geochemistry of Intrusions and Flood Basalts of the Noril'sk Region, USSR, with Implication for the Origin of the Ni-Cu Ores. Economic Geology, 87(4): 975-1004. doi: 10.2113/gsecongeo.87.4.975 [47] Pang, K.N., Li, C.S., Zhou, M.F., et al., 2008a. Abundant Fe-Ti Oxide Inclusions in Olivine from the Panzhihua and Hongge Layered Intrusions, SW China: Evidence for Early Saturation of Fe-Ti Oxides in Ferrobasaltic Magma. Contributions to Mineralogy and Petrology, 156(3): 307-321. doi: 10.1007/s00410-008-0287-z [48] Pang, K.N., Zhou, M.F., Lindsley, D., et al., 2008b. Origin of Fe-Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China. Journal of Petrology, 49(2): 295-313. doi: 10.1093/petrology/egm082 [49] Peach, C.L., Mathez, E.A., Keays, R.R., 1990. Sulfide Melt-Silicate Melt Distribution Coefficients for Noble-Metals and Other Chalcophile Elements as Deduced from MORB: Implications for Partial Melting. Geochimica et Cosmochimica Acta, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S [50] Ryerson, F.J., Hess, P.G., 1980. The Role of P2O5 in Silicate Melts. Geochimica et Cosmochimica Acta, 44(4): 611-624. doi: 10.1016/0016-7037(80)90253-7 [51] Sang, Z.N., Xia, B., Zhou, Y.S., et al., 2005. Experimental Study of Ore Gabbro Liquid Immiscibility. Science in China(Series D), 48(4): 496-505. doi: 10.1360/02yd0034 [52] Shellnutt, J.G., Wang, K.L., Zellmer, G.F., et al., 2011. Three Fe-Ti Oxide Ore-Bearing Gabbro-Granitoid Complexes in the Panxi Region of the Emeishan Large Igneous Province, SW China. American Journal of Science, 311(9): 773-812. doi: 10.2475/09.2011.02 [53] Shellnutt, J.G., Zhou, M.F., Zellmer, G.F., 2009. The Role of Fe-Ti Oxide Crystallization in the Formation of A-Type Granitoids with Implications for the Daly Gap: An Example from the Permian Baima Igneous Complex, SW China. Chemical Geology, 259(3-4): 204-217. doi: 10.1016/j.chemgeo.2008.10.044 [54] Sisson, T.W., Grove, T.L., 1993. Experimental Investigations of the Role of H2O in Cal-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. doi: 10.1007/BF00283225 [55] Song, X.Y., Hu, R.Z., Chen, L.M., 2009. Geochemical Natures of Copper, Nickel and PGE and Their Significance for the Study of Origin and Evolution of Mantle-Derived Magmas and Magmatic Sulfide Deposits. Earth Science Frontiers, 16(4): 287-305 (in Chinese with English abstract). http://www.researchgate.net/publication/291736611_Geochemical_natures_of_copper_nickel_and_PGE_and_their_significance_for_the_study_of_origin_and_evolution_of_mantle-derived_magmas_and_magmatic_sulfide_deposits [56] Song, X.Y., Zhang, C.J., Hu, R.Z., et al., 2005. Genetic Links of Magmatic Deposits in the Emeishan Large Igneous Province with Dynamics of Mantle Plume. Journal of Mineralogy and Petrology, 25(4): 35-44 (in Chinese with English abstract). http://www.researchgate.net/publication/285862953_Genetic_links_of_magmatic_deposits_in_the_Emeishan_large_igneous_province_with_the_dynamics_of_a_mantle_plume [57] Song, X.Y., Zhou, M.F., Cao, Z.M., et al., 2003. Ni-Cu-(PGE) Magmatic Sulfide Deposits in the Yangliuping Area, Permian Emeishan Igneous Province, SW China. Mineralium Deposita, 38(7): 831-843. doi: 10.1007/s00126-003-0362-3 [58] Song, X.Y., Zhou, M.F., Keays, R.R., et al., 2006. Geochemistry of the Emeishan Flood Basalts at Yangliuping, Sichan, SW China: Implications for Sulfide Segregation. Contributions to Mineralogy and Petrology, 152(1): 53-74. doi: 10.1007/s00410-006-0094-3 [59] Song, X.Y., Zhou, M.F., Tao, Y., et al., 2008. Controls on the Metal Compositions of Magmatic Sulfide Deposits in the Emeishan Large Igneous Province, SW China. Chemical Geology, 253(1-2): 38-49. doi: 10.1016/j.chemgeo.2008.04.005 [60] Sun, X.M., Wang, S.W., Sun, W.D., et al., 2008. PGE Geochemistry and Re-Os Dating of Massive Sulfide Ores from the Baimazhai Cu-Ni Deposit, Yunnan Province, China. Lithos, 105(1-2): 12-24. doi: 10.1016/j.lithos.2008.02.002 [61] Tao, Y., Hu, R.Z., Qi, L., et al., 2007. Geochemical Characteristics and Metallogenesis of the Limahe Mafic-Ultramafic Intrusion, Sichuan. Acta Petrologica Sinica, 23(11): 2785-2800 (in Chinese with English abstract). http://www.oalib.com/paper/1473120 [62] Tao, Y., Hu, R.Z., Wang, X.Z., et al., 2006. The Cu-Ni-PGE Mineralization in the Emeishan Large Igneous Province—Geochemical Study on Some Typical Deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 25(3): 236-244 (in Chinese with English abstract). http://www.researchgate.net/publication/287604370_The_Cu-Ni-PGE_mineralization_in_the_Emeishan_Large_Igneous_Province_-_Geochemical_study_on_some_typical_deposits [63] Tao, Y., Li, C.S., Hu, R.Z., et al., 2007. Petrogenesis of the Pt-Pd Mineralized Jinbaoshan Ultramafic Intrusion in the Permian Emeishan Large Igneous Province, SW China. Contributions to Mineralogy and Petrology, 153(3): 321-337. doi: 10.1007/s00410-006-0149-5 [64] Tao, Y., Li, C.S., Song, X.Y., et al., 2008. Mineralogical, Petrological, and Geochemical Studies of the Limahe Mafic-Ultramatic Intrusion and Associated Ni-Cu Sulfide Ores, SW China. Mineralium Deposita, 43(8): 849-872. doi: 10.1007/s00126-008-0207-1 [65] Tao, Y., Luo, T.Y., Gao, Z.M., et al., 2004. The Relation between Emeishan Continental Flood Basalts and Cu-Ni-PGE Deposits of Southwestern China Trap—A Case Study on Jinbaoshan Mafic-Ultramafic Intrusion, Yunnan. Geological Review, 50(1): 9-15 (in Chinese with English abstract). http://www.researchgate.net/publication/292754887_The_relation_between_Emeishan_continental_flood_basalts_and_Cu-Ni_deposits_of_southwestern_China_trap_A_case_study_on_Jinbaoshan_mafic-ultramafic_intrusion_Yunnan?ev=auth_pub [66] Thy, P., Lesher, C.E., Nielsen, T.F.D., et al., 2006. Experimental Constraints on the Skaergaard Liquid Line of Descent. Lithos, 92(1-2): 154-180. doi: 10.1016/j.lithos.2006.03.031 [67] Toplis, M.J., Carroll, M.R., 1995. An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems. Journal of Petrology, 36(5): 1137-1170. doi: 10.1093/petrology/36.5.1137 [68] Visser, W., van Groos, A.F.K., 1979. Effects of P2O5 and TiO2 on Liquid-Liquid Equilibria in the System K2O-FeO-Al2O3- SiO2. American Journal of Science, 279(8): 970-988. doi: 10.2475/ajs.279.8.970 [69] Wager, L.R., 1960. The Major Element Variation of the Layered Series of the Skaergaard Intrusion and a Re-Estimation of the Average Composition of the Hidden Layered Series and of the Successive Residual Magma. Journal of Petrology, 1(3): 364-398. doi: 10.1093/petrology/1.3.364 [70] Wang, C.Y., Zhou, M.F., 2006. Genesis of the Permian Baimazhai Magmatic Ni-Cu-(PGE) Sulfide Deposit, Yunnan, SW China. Mineralium Deposita, 41(8): 771-783. doi: 10.1007/s00126-006-0094-2 [71] Wang, C.Y., Zhou, M.F., Zhao, D.G., 2008. Fe-Ti-Cr Oxides from the Permian Xinjie Mafic-Ultramafic Layered Intrusion in the Emeishan Large Igneous Province, SW China: Crystallization from Fe- and Ti-Rich Basaltic Magmas. Lithos, 102(1-2): 198-217. doi: 10.1016/j.lithos.2007.08.007 [72] Wang, Y., 2008. Origin of the Permian Baimazhai Magmatic Ni-Cu-(PGE) Sulfide Deposits, Yunnan: Implications for the Relationship of Crustal Contamination and Mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 332-343 (in Chinese with English abstract). http://www.researchgate.net/publication/287750953_Origin_of_the_Permian_Baimazhai_magmatic_Ni-Cu-PGE_sulfide_deposits_Yunnan_Implications_for_the_relationship_of_crustal_contamination_and_mineralization [73] Wang, Y.Q., Zhang, Z.C., Xu, P.C., et al., 1999. Advance in the Structure Studies on Silicate Melts. Advance in Earth Scinces, 14(1-6): 168-172 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ902.010.htm [74] Wendlandt, R.F., 1982. Sulfide Saturation of Basalt and Andesite Melts at High Pressures and Temperatures. American Mineralogist, 67(9-10): 877-885. http://adsabs.harvard.edu/abs/1982AmMin..67..877W [75] Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., et al., 1993. Isotopic and Trace-Element Constraints on Mantle and Crustal Contributions to Siberian Continental Flood Basalts, Noril'sk Area, Siberia. Geochimica et Cosmochimica Acta, 57(15): 3677-3704. doi: 10.1016/0016-7037(93)90149-Q [76] Xiao, L., Xu, Y.G., Mei, H.J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3-4): 525-546. doi: 10.1016/j.epsl.2004.10.002 [77] Xu, Y.G., Chung, S.L., Jahn, B.M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3-4): 145-168. doi: 10.1016/S0024-4937(01)00055-X [78] Xu, Y.G., Chung, S.L., 2001. The Emeishan Large Igneous Province: Evidence for Mantle Plume Activity and Melting Conditions. Geochimica, 30(1): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200101001.htm [79] Zhang, Z.C., Mao, J.W., Chai, F.M., et al., 2009a. Geochemistry of the Permian Kalatongke Mafic Intrusions, Northern Xinjiang, Northwest China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits. Economic Geology, 104(2): 185-203. doi: 10.2113/gsecongeo.104.2.185 [80] Zhang, Z.C., Mao, J.W., Saunders, A.D., et al., 2009b. Petrogenetic Modeling of Three Mafic-Ultramafic Layered Intrusions in the Emeishan Large Igneous Province, SW China, Based on Isotopic and Bulk Chemical Constraints. Lithos, 113(3-4): 369-392. doi: 10.1016/j.lithos.2009.04.023 [81] Zhang, Z.C., Li, Y., Zhao, L., et al., 2007. Geochemisry of Three Layered Mafic-Ultramafic Intrusions in the Panxi Area and Constraints on Their Sources. Acta Petrologica Sinica, 23(10): 2339-2352 (in Chinese with English abstract). http://www.researchgate.net/publication/298905231_Geochemistry_of_three_layered_mafic-ultramafic_intrusionsin_the_Panxi_area_and_constraints_on_their_sources [82] Zhao, L., Zhang, Z.C., Wang, F.S., et al., 2006. Open-System Magma Chamber: An Example from the Xinjie Mafic-Ultramafic Layered Intrusion in Panxi Region, SW China. Acta Petrologica Sinica, 22(6): 1565-1578 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200606014.htm [83] Zhou, M.F., Arndt, N.T., Malpas, J., et al., 2008. Two Magma Series and Associated Ore Deposit Types in the Permian Emeishan Large Igneous Province, SW China. Lithos, 103(3-4): 352-268. doi: 10.1016/j.lithos.2007.10.006 [84] Zhou, M.F., Robinson, P.T., Lesher, C.M., et al., 2005. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe-Ti-V Oxide Deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. doi: 10.1093/petrology/egi054 [85] Zhu, D., Luo, T.Y., Gao, Z.M., et al., 2003. Differentiation of the Emeishan Flood Basalts at the Base and throughout the Crust of Southwest China. International Geology Review, 45(5): 471-477. doi: 10.2747/0020-6814.45.5.471 [86] 艾羽, 张招崇, 王福生, 等, 2005. 四川攀枝花和新街镁铁-超镁铁质岩体: 封闭体系和开放体系岩浆房演化的产物. 全国第四次火山学术研讨会, 北海, 1. [87] 管涛, 黄智龙, 许德如, 等, 2006. 云南金平白马寨含矿镁铁-超镁铁岩体岩石地球化学. 地质科学, 41(3): 441-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200603005.htm [88] 胡瑞忠, 陶琰, 钟宏, 等, 2005. 地幔柱成矿系统: 以峨眉山地幔柱为例. 地学前缘, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007 [89] 骆文娟, 2013. 峨眉山大火成岩省无矿基性超基性岩体与含矿岩体对比研究(博士学位论文). 北京: 中国地质大学. [90] 骆文娟, 张招崇, 侯通, 等, 2011. 攀西茨达复式岩体年代学和地球化学: 对峨眉山地幔柱活动时间的约束. 岩石学报, 27(10): 2947-2962. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110015.htm [91] 罗照华, Marakushev, A.A., Paniakh, H.A., 等, 2000. 铜镍硫化物矿床的成因——以诺里尔斯克(俄罗斯) 和金川(中国)为例. 矿床地质, 19(4): 330-339. doi: 10.3969/j.issn.0258-7106.2000.04.006 [92] 吕林素, 汪云峰, 李宏博, 等, 2011. 南非布什维尔德岩浆型Cu-Ni-PGE硫化物矿床成因探讨. 矿床地质, 30(6): 1129-1148. doi: 10.3969/j.issn.0258-7106.2011.06.013 [93] 莫宣学, 1985. 岩浆熔体结构. 地质科技情报, 4(2): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198502005.htm [94] 莫宣学, 1993. 岩浆熔体结构研究. 见: 肖庆辉, 李晓波, 刘树臣, 等, 编. 当代地质科学前沿. 武汉: 中国地质大学出版社, 270-274. [95] 宋谢炎, 胡瑞忠, 陈列锰, 2009. 铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义. 地学前缘, 16(4): 287-305. doi: 10.3321/j.issn:1005-2321.2009.04.028 [96] 宋谢炎, 张成江, 胡瑞忠, 等, 2005. 峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系. 矿物岩石, 25(4): 35-44. doi: 10.3969/j.issn.1001-6872.2005.04.007 [97] 陶琰, 胡瑞忠, 漆亮, 等, 2007. 四川力马河镁铁-超镁铁质岩体的地球化学特征及成岩成矿分析. 岩石学报, 23(11): 2785-2800. doi: 10.3969/j.issn.1000-0569.2007.11.010 [98] 陶琰, 胡瑞忠, 王兴阵, 等, 2006. 峨眉山大火成岩省Cu-Ni-PGE成矿作用——几个典型矿床岩石地球化学特征的分析. 矿物岩石地球化学通报, 25(3): 236-244. doi: 10.3969/j.issn.1007-2802.2006.03.004 [99] 陶琰, 罗泰义, 高振敏, 等, 2004. 西南暗色岩铜镍硫化物矿化岩体与峨眉山玄武岩的关系: 以云南金宝山岩体为例. 地质论评, 50(1): 9-15. doi: 10.3321/j.issn:0371-5736.2004.01.002 [100] 王焰, 2008. 云南二叠纪白马寨铜镍硫化物矿床的成因: 地壳混染与矿化的关系. 矿物岩石地球化学通报, 27(4): 332-343. doi: 10.3969/j.issn.1007-2802.2008.04.002 [101] 王永强, 张招崇, 徐培苍, 等, 1999. 硅酸盐熔体结构的研究进展和问题. 地球科学进展, 14(1-6): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.010.htm [102] 徐义刚, 钟孙霖, 2001. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件. 地球化学, 30(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101001.htm [103] 张招崇, 李莹, 赵莉, 等, 2007. 攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束. 岩石学报, 23(10): 2339-2352. doi: 10.3969/j.issn.1000-0569.2007.10.003 [104] 赵莉, 张招崇, 王福生, 等, 2006. 一个开放的岩浆房系统: 攀西新街镁铁-超镁铁质层状岩体. 岩石学报, 22(6): 1565-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606014.htm