• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩浆Cu-Ni-PGE矿床和Fe-Ti-V矿床的关键控矿因素评述:兼论与峨眉山玄武岩的关系

    骆文娟

    骆文娟, 2014. 岩浆Cu-Ni-PGE矿床和Fe-Ti-V矿床的关键控矿因素评述:兼论与峨眉山玄武岩的关系. 地球科学, 39(10): 1343-1354. doi: 10.3799/dqkx.2014.126
    引用本文: 骆文娟, 2014. 岩浆Cu-Ni-PGE矿床和Fe-Ti-V矿床的关键控矿因素评述:兼论与峨眉山玄武岩的关系. 地球科学, 39(10): 1343-1354. doi: 10.3799/dqkx.2014.126
    Luo Wenjuan, 2014. Magmatic Cu-Ni-PGE Sulfide and Fe-Ti-V Oxide Deposits and Their Relationship to Emeishan Basalt in Permian Emeishan Large IgneousProvince, SW China: A Review. Earth Science, 39(10): 1343-1354. doi: 10.3799/dqkx.2014.126
    Citation: Luo Wenjuan, 2014. Magmatic Cu-Ni-PGE Sulfide and Fe-Ti-V Oxide Deposits and Their Relationship to Emeishan Basalt in Permian Emeishan Large IgneousProvince, SW China: A Review. Earth Science, 39(10): 1343-1354. doi: 10.3799/dqkx.2014.126

    岩浆Cu-Ni-PGE矿床和Fe-Ti-V矿床的关键控矿因素评述:兼论与峨眉山玄武岩的关系

    doi: 10.3799/dqkx.2014.126
    基金项目: 

    中央级公益性科研院所基本科研业务专项资金 K1412

    中央级公益性科研院所基本科研业务专项资金 K1202

    中国地质调查局地质调查工作项目 12120113090300

    中国地质调查局地质调查工作项目 1212011220894-2

    详细信息
      作者简介:

      骆文娟(1986-),女,助理研究员,主要从事岩浆岩及相关矿产研究.E-mail: luowenjuan05@126.com

    • 中图分类号: P611.1

    Magmatic Cu-Ni-PGE Sulfide and Fe-Ti-V Oxide Deposits and Their Relationship to Emeishan Basalt in Permian Emeishan Large IgneousProvince, SW China: A Review

    • 摘要: 峨眉山大火成岩省中广泛分布着赋存Fe-Ti-V氧化物矿的层状辉长岩体和赋存Cu-Ni-PGE硫化物矿的镁铁超镁铁岩体,系统归纳并分析了这两类成矿岩浆在控矿因素、岩浆性质、岩浆过程等方面存在的差异.对比Cu-Ni-PGE硫化物矿床和Fe-Ti-V氧化物矿床差异,认为岩浆分异程度、部分熔融程度、挥发分(S和P)以及是否存在地壳混染是造成这两类矿床成矿差异的原因.一系列的矿床实例分析表明高Ti或低Ti性质并不是玄武质岩浆成矿专属性的决定性因素,Fe-Ti-V氧化物矿床和Cu-Ni-PGE硫化物矿床的形成与各自的控矿因素有关.

       

    • 图  1  峨眉山大火成岩省中Fe-Ti-V氧化物矿床与Cu-Ni-PGE硫化物矿床成矿模式简图

      Fig.  1.  The metallogenic model of the Fe-Ti-V oxide and Cu-Ni-PGE sulfide deposits in Emeishan large igneous province, SW China

      表  1  2类成矿岩体地质特征对比

      Table  1.   Comparisons between Cu-Ni-PGE sulfide-bearing intrusions and Fe-Ti-V oxide-bearing intrusions on geological features

      Fe-Ti-V氧化物矿岩体 Cu-Ni-PGE硫化物矿岩体
      侵位地层 大多数前寒武系,少数志留系 大多数泥盆系、奥陶系,少数前震旦系
      岩体出露面积 攀枝花约30 km2,白马约50 km2 金宝山约5 km2,力马河约0.12~0.16 km2,杨柳坪约0.5 km2
      辉石种类 单斜辉石 斜方辉石
      围岩特征 白云质灰岩、玄武岩 含少量黄铁矿的硅质岩
      磷灰石 攀枝花岩体中间带的岩石含5%磷灰石
      伴生岩体 中酸性岩
      下载: 导出CSV
    • [1] Ai, Y., Zhang, Z.C., Wang, F.S., et al., 2005. The Panzhihua and Xinjie Mafic-Ultramafic Intrusions: The Products of the Closed and Open Magmatic Systems. The Fourth National Academic Seminar of Volcano, Beihai, 1 (in Chinese).
      [2] Anderson, A.T., 1995. CO2 and the Eruptibility of Picrite and Komatiite. Lithos, 34(1-3): 19-25. doi: 10.1016/0024-4937(95)90005-5
      [3] Ariskin, A.A., Barmina, G.S., 1999. An Empirical Model for the Calculation of Spinel-Melt Equilibria in Mafic Igneous Systems at Atmospheric Pressure: 2. Fe-Ti Oxides. Contributions to Mineralogy and Petrology, 134(3): 251-263. doi: 10.1007/s004100050482
      [4] Arndt, N., Jenner, G., Ohnenstetter, M., et al., 2005a. Trace Elements in the Merensky Reef and Adjacent Norites Bushveld Complex, South Africa. Mineralium Deposita, 40(5): 550-575. doi: 10.1007/s00126-005-0030-x
      [5] Arndt, N., Lesher, C.M., Czamanske, G.K., 2005b. Mantle-Derived Magmas and Magmatic Ni-Cu-(PGE) Deposits. Economic Geology, 100th Aniversary Volume, Salt Lake City, 5-23. http://www.researchgate.net/publication/255643533_Mantle-derived_magmas_and_magmatic_Ni-Cu-PGE_deposits
      [6] Bezmen, N.S., Asif, M., Brugmann, G.E., et al., 1994. Experimental Determinations of Sulfide-Silicate Partitioning of PGE and Au. Geochimica et Cosmochimica Acta, 58: 1251-1260. doi: 10.1016/0016-7037(94)90379-4
      [7] Brugmann, G.E., Naldrett, A.J., Asif, M., et al., 1993. Siderophile and Chalcophile Metals as Tracers of the Evolution of the Siberian Trap in the Noril'sk Region, Russia. Geochimica et Cosmochimica Acta, 57(9): 2001-2018. doi: 10.1016/0016-7037(93)90089-F
      [8] Carroll, M.R., Webster, J.D., 1994. Solubilities of Sulfur, Noble Gases, Nitrogen, Chlorine, and Fluorine in Magmas. Reviews in Mineralogy, 30: 231-279.
      [9] Fleet, M.E., Crocket, J.H., Stone, W.E., 1996. Partitioning of Platinum-Group Elements (Os, Ir, Ru, Pt, Pd) and Gold between Sulfide Liquid and Basalt Melt. Geochimica et Cosmochimica Acta, 60(13): 2397-2412. doi: 10.1016/0016-7037(96)00100-7
      [10] Francis, R.D., 1990. Sulfide Globules in Mid-Ocean Ridge Basalts (MORB) and the Effect of Oxygen Abundance in Fe-S-O Liquids on the Ability of Those Liquids to Partition Metals from MORB and Komatiitic Magmas. Chemical Geology, 85(3-4): 199-213. doi: 10.1016/0009-2541(90)90001-N
      [11] Ganino, C., Arndt, N.T., Zhou, M.F., et al., 2008. Interaction of Magma with Sedimentary Wall Rock and Magnetite Ore Genesis in the Panzhihua Mafic Intrusion, SW China. Mineralium Deposita, 43(6): 677-694. doi: 10.1007/s00126-008-0191-5
      [12] Gorbachev, N.S., Kashirceva, G.A., 1986. Fluid-Magmatic Differentiation of Basaltic Magma and Equilibrium with Magmatic Sulfides. In: Experiments in the Study of Important Problems in Geology. Nauka, Moscow, 98-119.
      [13] Guan, T., Huang, Z.L., Xu, D.R., et al., 2006. Lithogeochemistry of the Sulfide-Bearing Mafic-Ultramafic Rock at Baimazhai, Jinping, Southern Yunnan. Chinese Journal of Geology, 41(3): 441-454 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200603005.htm
      [14] Hanski, E.J., 1992. Petrology of the Pechenga Ferropicrites and Cogenetic, Ni-Bearing Gabbro-Wehrlite Intrusions, Kola Peninsula, Russia. Geological Survey of Finland, Bulletin, 367: 192. http://www.researchgate.net/publication/313702212_Petrology_of_the_Pechenga_ferropicrites_and_cogenetic_Ni-bearing_Gabbro-Wehrlite_intrusions_Kola_Peninsula_Russia
      [15] Haughton, D.R., Roeder, P.L., Skinner, B.J., 1974. Solubility of Sulfur in Mafic Magmas. Economic Geology, 69: 451-467. doi: 10.2113/gsecongeo.69.4.451
      [16] Hawkesworth, C.J., Lightfoot, P.C., Fedorenko, V.A., et al., 1995. Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts. Lithos, 34(1-3): 61-88. doi: 10.1016/0024-4937(95)90011-X
      [17] Hu, R.Z., Tao, Y., Zhong, H., et al., 2005. Mineralization Systems of a Mantle Plume: A Case Study from the Emeishan Igneous Province, Southwest China. Earth Science Frontiers, 12(1): 42-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200501005.htm
      [18] Hulbert, L.J., Duke, J.M., Eckstrand, O.R., et al., 1988. Geological Environments of the Platinum Group Elements. Geological Survey of Canada, Open File, 1440: 3-99. http://www.researchgate.net/publication/291984664_Geological_environments_of_the_platinum_group_elements
      [19] Huppert, H.E., Sparks, R.S.J., 1985. Komatiites I: Eruption and Flow. Journal of Petrology, 26(3): 694-725. doi: 10.1093/petrology/26.3.694
      [20] Irvine, T.N., 1975, Crystallization Sequences in the Muskox Intrusion and other Layered Intrusions—II. Origin of Chromitite Layers and Similar Deposits of Other Magmatic Ores. Geochimica et Cosmochimica Acta, 39(6-7): 991-1020. doi: 10.1016/0016-7037(75)90043-5
      [21] Irvine, T.N., Keith, D.W., Todd, S.G., 1983. The J-M Platinum-Palladium Reef of the Stillwater Complex, Montana: II. Origin by Double-Diffusive Convective Magma Mixing and Implications for the Bushveld Complex. Economic Geology, 78(7): 1287-1334. doi: 10.2113/gsecongeo.78.7.1287
      [22] Jugo, P.J., Luth, R.W., Richards, J.P., 2005. An Experimental Study of the Sulfur Content in Basaltic Melts Saturated with Immiscible Sulfide or Sulfate Liquids at 1 300 ℃ and 1.0 GPa. Journal of Petrology, 46(4): 783-798. doi: 10.1093/petrology/egh097
      [23] Juster, T.C., Grove, T.L., Perfit, M.R., 1989. Experimental Constraints on the Generation of FeTi Basalts, Andesites, and Rhyodacites at the Galapagos Spreading Centre, 85°W and 95°W. Journal of Geophysical Research, 94(B7): 9251-9274. doi: 10.1029/JB094iB07p09251
      [24] Keays, R.R., 1995. The Role of Komatiitic and Picritic Magmatism and S-Saturation in the Formation of Ore Deposits. Lithos, 34(1-3): 1-18. doi: 10.1016/0024-4937(95)90003-9
      [25] Kolker, A., 1982. Mineralogy and Geochemistry of Fe-Ti Oxide and Apatite (Nelsonite) Deposits and Evaluation of the Liquid Immiscibility Hypothesis. Economic Geology, 77(5): 1146-1158. doi: 10.2113/gsecongeo.77.5.1146
      [26] Lambert, D.D., Foster, J.G., Frick, L.R., et al., 1998. Geodynamics of Magmatic Cu-Ni-PGE Sulfide Deposits: New Insights from the Re-Os Isotopic System. Economic Geology, 93(2): 121-136. doi: 10.2113/gsecongeo.93.2.121
      [27] Lesher, C.M., Burnham, O.M., 2001. Multicomponent Elemental and Isotopic Mixing in Ni-Cu-(PGE) Ores at Kambalda, Western Australia. Canadian Mineralogist, 39(2): 421-446. doi: 10.2113/gscanmin.39.2.421
      [28] Li, C.S., Maier, W.D., de Waal, S.A., 2001a. Magmatic Ni-Cu versus PGE Deposits: Contrasting Genetic Controls and Exploration Implications. South African Journal of Geology, 104(4): 309-318. doi: 10.2113/gssajg.104.4.309
      [29] Li, C.S., Maier, W.D., de Waal, S.A., 2001b. The Role of Magma Mixing in the Genesis of PGE Mineralization in the Bushveld Complex: Thermodynamic Calculation and New Interpretations. Economic Geology, 96(3): 653-662. doi: 10.2113/gsecongeo.96.3.653
      [30] Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., et al., 1993. Remobilisation of the Continental Lithosphere by a Mantle Plume: Major-, Trace-Element and Sr-, Nd-, and Pb-Isotope Evidence from Picritic and Tholeiitic Lavas of the Noril'sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology, 114(2): 171-188. doi: 10.1007/BF00307754
      [31] Lightfoot, P.C., Keays, R.R., 2005. Siderophile and Chalcophile Metal Variations in Flood Basalts from the Siberian Trap, Noril'sk Region: Implication for the Origin of the Ni-Cu-PGE Sulfide Ores. Economic Geology, 100(3): 439-462. doi: 10.2113/gsecongeo.100.3.439
      [32] Lightfoot, P.C., Naldrett, A.J., Gorbachev, N.S., et al., 1990. Geochemistry of the Siberian Trap of the Noril'sk Area, USSR, with Implications for the Relative Contributions of Crustal and Mantle to Flood Basalt Magmatism. Contributions to Mineralogy and Petrology, 104(6): 631-644. doi: 10.1007/BF01167284
      [33] Luo, W.J., 2013. Comparisons between Ore-Bearing and Barren Mafic-Ultramafic Intrusions in the Emeishan Large Igneous Province, Southwest China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [34] Luo, W.J., Zhang, Z.C., Hou, T., et al., 2011. Geochronology and Geochemistry of the Cida Complex in the Panxi District: Constraints on the Duration of the Emeishan Mantle Plume. Acta Petrologica Sinica, 27(10): 2947-2962 (in Chinese with English abstract).
      [35] Luo, Z.H., Marakushev, A.A., Paniakh, H.A., et al., 2000. The Origin of Copper-Nickel Sulfide Deposits—Exemplified by Norilsk (Russia) and Jinchuan (China). Minral Deposits, 19(4): 330-339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200004005.htm
      [36] Lü, L.S., Wang, Y.F., Li, H.B., et al., 2011. Discussion on the Metallogenesis of Bushveld Magmatic Cu-Ni-PGE Sulphide Deposit in South Africa. Mineral Deposits, 30(6): 1129-1148 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201106014.htm
      [37] Mavrogenes, J.A., O'Neill, H.S.C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180. doi: 10.1016/S0016-7037(98)00289-0
      [38] Mitchell, A.A., Scoon, R.N., 2007. The Merensky Reef at Winnaarshoek, Eastern Bushveld Complex: A Primary Magmatic Hypothesis Based on a Wide Reef Facies. Economic Geology, 102(5): 971-1009. doi: 10.2113/gsecongeo.102.5.971
      [39] Mo, X.X., 1985. The Structure of Magmatic Melt. Geological Science and Technology Information, 4(2): 21-31 (in Chinese).
      [40] Mo, X.X., 1993. Study on the Structure of Magmatic Melt. In: Xiao, Q.H., Li, X.B., Liu, S.C., et al., eds., Contemporary Geological Science Frontiers. China University of Geosciences Press, Wuhan, 270-274 (in Chinese).
      [41] Naldrett, A.J., 1997. Key Factors in the Genesis of Noril'sk, Sudbury, Jinchuan, Voisey's Bay and Other World-Class Ni-Cu-PGE Deposits: Implications for Exploration. Australian Journal of Earth Sciences, 44(3): 283-315. doi: 10.1080/08120099708728314
      [42] Naldrett, A.J., 1999. World-Class Ni-Cu-PGE Deposits: Key Factors in Their Genesis. Mineralium Deposita, 34(3): 227-240. doi: 10.1007/s001260050200
      [43] Naldrett, A.J., 2004. Magmatic Sulfide Deposit: Geology, Geochemistry and Exploration. Springer, Berlin, 137 -277, 481-522, 727.
      [44] Naldrett, A.J., Fedorenko, V., 1995. Ni-Cu-PGE Deposits of the Noril'sk Region, Siberia: Their Formation in Conduits for Flood Basalt Volcanism. Trans. Inst. Mining Metallurgy, Section B Applied Earth Science, 104: B1-B86. http://www.researchgate.net/publication/313622745_Ni-Cu-PGE_deposits_of_the_Noril'sk_region_Siberia_their_formation_in_conduits_for_flood_basalt_volcanism
      [45] Naldrett, A.J., Gasparrini, E.C., Barnes, S.J., et al., 1986. The Upper Critical Zone of the Bushveld Complex and the Origin of Merensky-Type Ores. Economic Geology, 81(5): 1105-1117. doi: 10.2113/gsecongeo.81.5.1105
      [46] Naldrett, A.J., Lightfoot, P.C., Fedorenko, V., et al., 1992. Geology and Geochemistry of Intrusions and Flood Basalts of the Noril'sk Region, USSR, with Implication for the Origin of the Ni-Cu Ores. Economic Geology, 87(4): 975-1004. doi: 10.2113/gsecongeo.87.4.975
      [47] Pang, K.N., Li, C.S., Zhou, M.F., et al., 2008a. Abundant Fe-Ti Oxide Inclusions in Olivine from the Panzhihua and Hongge Layered Intrusions, SW China: Evidence for Early Saturation of Fe-Ti Oxides in Ferrobasaltic Magma. Contributions to Mineralogy and Petrology, 156(3): 307-321. doi: 10.1007/s00410-008-0287-z
      [48] Pang, K.N., Zhou, M.F., Lindsley, D., et al., 2008b. Origin of Fe-Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China. Journal of Petrology, 49(2): 295-313. doi: 10.1093/petrology/egm082
      [49] Peach, C.L., Mathez, E.A., Keays, R.R., 1990. Sulfide Melt-Silicate Melt Distribution Coefficients for Noble-Metals and Other Chalcophile Elements as Deduced from MORB: Implications for Partial Melting. Geochimica et Cosmochimica Acta, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S
      [50] Ryerson, F.J., Hess, P.G., 1980. The Role of P2O5 in Silicate Melts. Geochimica et Cosmochimica Acta, 44(4): 611-624. doi: 10.1016/0016-7037(80)90253-7
      [51] Sang, Z.N., Xia, B., Zhou, Y.S., et al., 2005. Experimental Study of Ore Gabbro Liquid Immiscibility. Science in China(Series D), 48(4): 496-505. doi: 10.1360/02yd0034
      [52] Shellnutt, J.G., Wang, K.L., Zellmer, G.F., et al., 2011. Three Fe-Ti Oxide Ore-Bearing Gabbro-Granitoid Complexes in the Panxi Region of the Emeishan Large Igneous Province, SW China. American Journal of Science, 311(9): 773-812. doi: 10.2475/09.2011.02
      [53] Shellnutt, J.G., Zhou, M.F., Zellmer, G.F., 2009. The Role of Fe-Ti Oxide Crystallization in the Formation of A-Type Granitoids with Implications for the Daly Gap: An Example from the Permian Baima Igneous Complex, SW China. Chemical Geology, 259(3-4): 204-217. doi: 10.1016/j.chemgeo.2008.10.044
      [54] Sisson, T.W., Grove, T.L., 1993. Experimental Investigations of the Role of H2O in Cal-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. doi: 10.1007/BF00283225
      [55] Song, X.Y., Hu, R.Z., Chen, L.M., 2009. Geochemical Natures of Copper, Nickel and PGE and Their Significance for the Study of Origin and Evolution of Mantle-Derived Magmas and Magmatic Sulfide Deposits. Earth Science Frontiers, 16(4): 287-305 (in Chinese with English abstract). http://www.researchgate.net/publication/291736611_Geochemical_natures_of_copper_nickel_and_PGE_and_their_significance_for_the_study_of_origin_and_evolution_of_mantle-derived_magmas_and_magmatic_sulfide_deposits
      [56] Song, X.Y., Zhang, C.J., Hu, R.Z., et al., 2005. Genetic Links of Magmatic Deposits in the Emeishan Large Igneous Province with Dynamics of Mantle Plume. Journal of Mineralogy and Petrology, 25(4): 35-44 (in Chinese with English abstract). http://www.researchgate.net/publication/285862953_Genetic_links_of_magmatic_deposits_in_the_Emeishan_large_igneous_province_with_the_dynamics_of_a_mantle_plume
      [57] Song, X.Y., Zhou, M.F., Cao, Z.M., et al., 2003. Ni-Cu-(PGE) Magmatic Sulfide Deposits in the Yangliuping Area, Permian Emeishan Igneous Province, SW China. Mineralium Deposita, 38(7): 831-843. doi: 10.1007/s00126-003-0362-3
      [58] Song, X.Y., Zhou, M.F., Keays, R.R., et al., 2006. Geochemistry of the Emeishan Flood Basalts at Yangliuping, Sichan, SW China: Implications for Sulfide Segregation. Contributions to Mineralogy and Petrology, 152(1): 53-74. doi: 10.1007/s00410-006-0094-3
      [59] Song, X.Y., Zhou, M.F., Tao, Y., et al., 2008. Controls on the Metal Compositions of Magmatic Sulfide Deposits in the Emeishan Large Igneous Province, SW China. Chemical Geology, 253(1-2): 38-49. doi: 10.1016/j.chemgeo.2008.04.005
      [60] Sun, X.M., Wang, S.W., Sun, W.D., et al., 2008. PGE Geochemistry and Re-Os Dating of Massive Sulfide Ores from the Baimazhai Cu-Ni Deposit, Yunnan Province, China. Lithos, 105(1-2): 12-24. doi: 10.1016/j.lithos.2008.02.002
      [61] Tao, Y., Hu, R.Z., Qi, L., et al., 2007. Geochemical Characteristics and Metallogenesis of the Limahe Mafic-Ultramafic Intrusion, Sichuan. Acta Petrologica Sinica, 23(11): 2785-2800 (in Chinese with English abstract). http://www.oalib.com/paper/1473120
      [62] Tao, Y., Hu, R.Z., Wang, X.Z., et al., 2006. The Cu-Ni-PGE Mineralization in the Emeishan Large Igneous Province—Geochemical Study on Some Typical Deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 25(3): 236-244 (in Chinese with English abstract). http://www.researchgate.net/publication/287604370_The_Cu-Ni-PGE_mineralization_in_the_Emeishan_Large_Igneous_Province_-_Geochemical_study_on_some_typical_deposits
      [63] Tao, Y., Li, C.S., Hu, R.Z., et al., 2007. Petrogenesis of the Pt-Pd Mineralized Jinbaoshan Ultramafic Intrusion in the Permian Emeishan Large Igneous Province, SW China. Contributions to Mineralogy and Petrology, 153(3): 321-337. doi: 10.1007/s00410-006-0149-5
      [64] Tao, Y., Li, C.S., Song, X.Y., et al., 2008. Mineralogical, Petrological, and Geochemical Studies of the Limahe Mafic-Ultramatic Intrusion and Associated Ni-Cu Sulfide Ores, SW China. Mineralium Deposita, 43(8): 849-872. doi: 10.1007/s00126-008-0207-1
      [65] Tao, Y., Luo, T.Y., Gao, Z.M., et al., 2004. The Relation between Emeishan Continental Flood Basalts and Cu-Ni-PGE Deposits of Southwestern China Trap—A Case Study on Jinbaoshan Mafic-Ultramafic Intrusion, Yunnan. Geological Review, 50(1): 9-15 (in Chinese with English abstract). http://www.researchgate.net/publication/292754887_The_relation_between_Emeishan_continental_flood_basalts_and_Cu-Ni_deposits_of_southwestern_China_trap_A_case_study_on_Jinbaoshan_mafic-ultramafic_intrusion_Yunnan?ev=auth_pub
      [66] Thy, P., Lesher, C.E., Nielsen, T.F.D., et al., 2006. Experimental Constraints on the Skaergaard Liquid Line of Descent. Lithos, 92(1-2): 154-180. doi: 10.1016/j.lithos.2006.03.031
      [67] Toplis, M.J., Carroll, M.R., 1995. An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems. Journal of Petrology, 36(5): 1137-1170. doi: 10.1093/petrology/36.5.1137
      [68] Visser, W., van Groos, A.F.K., 1979. Effects of P2O5 and TiO2 on Liquid-Liquid Equilibria in the System K2O-FeO-Al2O3- SiO2. American Journal of Science, 279(8): 970-988. doi: 10.2475/ajs.279.8.970
      [69] Wager, L.R., 1960. The Major Element Variation of the Layered Series of the Skaergaard Intrusion and a Re-Estimation of the Average Composition of the Hidden Layered Series and of the Successive Residual Magma. Journal of Petrology, 1(3): 364-398. doi: 10.1093/petrology/1.3.364
      [70] Wang, C.Y., Zhou, M.F., 2006. Genesis of the Permian Baimazhai Magmatic Ni-Cu-(PGE) Sulfide Deposit, Yunnan, SW China. Mineralium Deposita, 41(8): 771-783. doi: 10.1007/s00126-006-0094-2
      [71] Wang, C.Y., Zhou, M.F., Zhao, D.G., 2008. Fe-Ti-Cr Oxides from the Permian Xinjie Mafic-Ultramafic Layered Intrusion in the Emeishan Large Igneous Province, SW China: Crystallization from Fe- and Ti-Rich Basaltic Magmas. Lithos, 102(1-2): 198-217. doi: 10.1016/j.lithos.2007.08.007
      [72] Wang, Y., 2008. Origin of the Permian Baimazhai Magmatic Ni-Cu-(PGE) Sulfide Deposits, Yunnan: Implications for the Relationship of Crustal Contamination and Mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 332-343 (in Chinese with English abstract). http://www.researchgate.net/publication/287750953_Origin_of_the_Permian_Baimazhai_magmatic_Ni-Cu-PGE_sulfide_deposits_Yunnan_Implications_for_the_relationship_of_crustal_contamination_and_mineralization
      [73] Wang, Y.Q., Zhang, Z.C., Xu, P.C., et al., 1999. Advance in the Structure Studies on Silicate Melts. Advance in Earth Scinces, 14(1-6): 168-172 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ902.010.htm
      [74] Wendlandt, R.F., 1982. Sulfide Saturation of Basalt and Andesite Melts at High Pressures and Temperatures. American Mineralogist, 67(9-10): 877-885. http://adsabs.harvard.edu/abs/1982AmMin..67..877W
      [75] Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., et al., 1993. Isotopic and Trace-Element Constraints on Mantle and Crustal Contributions to Siberian Continental Flood Basalts, Noril'sk Area, Siberia. Geochimica et Cosmochimica Acta, 57(15): 3677-3704. doi: 10.1016/0016-7037(93)90149-Q
      [76] Xiao, L., Xu, Y.G., Mei, H.J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3-4): 525-546. doi: 10.1016/j.epsl.2004.10.002
      [77] Xu, Y.G., Chung, S.L., Jahn, B.M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3-4): 145-168. doi: 10.1016/S0024-4937(01)00055-X
      [78] Xu, Y.G., Chung, S.L., 2001. The Emeishan Large Igneous Province: Evidence for Mantle Plume Activity and Melting Conditions. Geochimica, 30(1): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200101001.htm
      [79] Zhang, Z.C., Mao, J.W., Chai, F.M., et al., 2009a. Geochemistry of the Permian Kalatongke Mafic Intrusions, Northern Xinjiang, Northwest China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits. Economic Geology, 104(2): 185-203. doi: 10.2113/gsecongeo.104.2.185
      [80] Zhang, Z.C., Mao, J.W., Saunders, A.D., et al., 2009b. Petrogenetic Modeling of Three Mafic-Ultramafic Layered Intrusions in the Emeishan Large Igneous Province, SW China, Based on Isotopic and Bulk Chemical Constraints. Lithos, 113(3-4): 369-392. doi: 10.1016/j.lithos.2009.04.023
      [81] Zhang, Z.C., Li, Y., Zhao, L., et al., 2007. Geochemisry of Three Layered Mafic-Ultramafic Intrusions in the Panxi Area and Constraints on Their Sources. Acta Petrologica Sinica, 23(10): 2339-2352 (in Chinese with English abstract). http://www.researchgate.net/publication/298905231_Geochemistry_of_three_layered_mafic-ultramafic_intrusionsin_the_Panxi_area_and_constraints_on_their_sources
      [82] Zhao, L., Zhang, Z.C., Wang, F.S., et al., 2006. Open-System Magma Chamber: An Example from the Xinjie Mafic-Ultramafic Layered Intrusion in Panxi Region, SW China. Acta Petrologica Sinica, 22(6): 1565-1578 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200606014.htm
      [83] Zhou, M.F., Arndt, N.T., Malpas, J., et al., 2008. Two Magma Series and Associated Ore Deposit Types in the Permian Emeishan Large Igneous Province, SW China. Lithos, 103(3-4): 352-268. doi: 10.1016/j.lithos.2007.10.006
      [84] Zhou, M.F., Robinson, P.T., Lesher, C.M., et al., 2005. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe-Ti-V Oxide Deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. doi: 10.1093/petrology/egi054
      [85] Zhu, D., Luo, T.Y., Gao, Z.M., et al., 2003. Differentiation of the Emeishan Flood Basalts at the Base and throughout the Crust of Southwest China. International Geology Review, 45(5): 471-477. doi: 10.2747/0020-6814.45.5.471
      [86] 艾羽, 张招崇, 王福生, 等, 2005. 四川攀枝花和新街镁铁-超镁铁质岩体: 封闭体系和开放体系岩浆房演化的产物. 全国第四次火山学术研讨会, 北海, 1.
      [87] 管涛, 黄智龙, 许德如, 等, 2006. 云南金平白马寨含矿镁铁-超镁铁岩体岩石地球化学. 地质科学, 41(3): 441-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200603005.htm
      [88] 胡瑞忠, 陶琰, 钟宏, 等, 2005. 地幔柱成矿系统: 以峨眉山地幔柱为例. 地学前缘, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007
      [89] 骆文娟, 2013. 峨眉山大火成岩省无矿基性超基性岩体与含矿岩体对比研究(博士学位论文). 北京: 中国地质大学.
      [90] 骆文娟, 张招崇, 侯通, 等, 2011. 攀西茨达复式岩体年代学和地球化学: 对峨眉山地幔柱活动时间的约束. 岩石学报, 27(10): 2947-2962. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110015.htm
      [91] 罗照华, Marakushev, A.A., Paniakh, H.A., 等, 2000. 铜镍硫化物矿床的成因——以诺里尔斯克(俄罗斯) 和金川(中国)为例. 矿床地质, 19(4): 330-339. doi: 10.3969/j.issn.0258-7106.2000.04.006
      [92] 吕林素, 汪云峰, 李宏博, 等, 2011. 南非布什维尔德岩浆型Cu-Ni-PGE硫化物矿床成因探讨. 矿床地质, 30(6): 1129-1148. doi: 10.3969/j.issn.0258-7106.2011.06.013
      [93] 莫宣学, 1985. 岩浆熔体结构. 地质科技情报, 4(2): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198502005.htm
      [94] 莫宣学, 1993. 岩浆熔体结构研究. 见: 肖庆辉, 李晓波, 刘树臣, 等, 编. 当代地质科学前沿. 武汉: 中国地质大学出版社, 270-274.
      [95] 宋谢炎, 胡瑞忠, 陈列锰, 2009. 铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义. 地学前缘, 16(4): 287-305. doi: 10.3321/j.issn:1005-2321.2009.04.028
      [96] 宋谢炎, 张成江, 胡瑞忠, 等, 2005. 峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系. 矿物岩石, 25(4): 35-44. doi: 10.3969/j.issn.1001-6872.2005.04.007
      [97] 陶琰, 胡瑞忠, 漆亮, 等, 2007. 四川力马河镁铁-超镁铁质岩体的地球化学特征及成岩成矿分析. 岩石学报, 23(11): 2785-2800. doi: 10.3969/j.issn.1000-0569.2007.11.010
      [98] 陶琰, 胡瑞忠, 王兴阵, 等, 2006. 峨眉山大火成岩省Cu-Ni-PGE成矿作用——几个典型矿床岩石地球化学特征的分析. 矿物岩石地球化学通报, 25(3): 236-244. doi: 10.3969/j.issn.1007-2802.2006.03.004
      [99] 陶琰, 罗泰义, 高振敏, 等, 2004. 西南暗色岩铜镍硫化物矿化岩体与峨眉山玄武岩的关系: 以云南金宝山岩体为例. 地质论评, 50(1): 9-15. doi: 10.3321/j.issn:0371-5736.2004.01.002
      [100] 王焰, 2008. 云南二叠纪白马寨铜镍硫化物矿床的成因: 地壳混染与矿化的关系. 矿物岩石地球化学通报, 27(4): 332-343. doi: 10.3969/j.issn.1007-2802.2008.04.002
      [101] 王永强, 张招崇, 徐培苍, 等, 1999. 硅酸盐熔体结构的研究进展和问题. 地球科学进展, 14(1-6): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.010.htm
      [102] 徐义刚, 钟孙霖, 2001. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件. 地球化学, 30(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101001.htm
      [103] 张招崇, 李莹, 赵莉, 等, 2007. 攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束. 岩石学报, 23(10): 2339-2352. doi: 10.3969/j.issn.1000-0569.2007.10.003
      [104] 赵莉, 张招崇, 王福生, 等, 2006. 一个开放的岩浆房系统: 攀西新街镁铁-超镁铁质层状岩体. 岩石学报, 22(6): 1565-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606014.htm
    • 加载中
    图(1) / 表(1)
    计量
    • 文章访问数:  3344
    • HTML全文浏览量:  172
    • PDF下载量:  542
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-02-25
    • 刊出日期:  2014-10-01

    目录

      /

      返回文章
      返回