In-Situ Stress Measurement of Deep Borehole in North Segment of Jinzhou Fracture Belt and Analysis on Its Activity
-
摘要: 为查明辽东半岛金州地震活动断裂带现今地应力状态和活动状况,在该断裂带北段熊岳城东侧开展了随深度系统地取心钻探和水压致裂地应力测量工作,完成了600 m钻探深度范围内地应力测量试验27段和水平最大主应力方向测试5段.钻探岩心初步揭示了地壳浅表层的岩体结构特征;随深度系统的地应力测量结果表明,3个主应力关系为SV>SH>Sh,垂直应力起主导作用,易于正断作用发生;现今最大水平主应力方向为56°~81°NE,反映NNE走向的金州断裂带北段现今活动具有右行走滑特征.地应力测量结果揭示的金州断裂带正断兼右行走滑特征与已有的该区域研究成果相吻合,为其现今活动性研究补充了新的动力学数据.Abstract: Haicheng earthquake occurred in the north segment of Jinzhou fracture belt which is the most important active tectonic structure controlling earthquakes in Liaodong Peninsula. In this study, data was collected from 27 in-situ stress and 5 directional testing sensors installed at varying intervals along the total depth of single 600 m borehole located inside a granite rich region in the north segment of Jinzhou fracture belt at the east part of Xiongyue city. Combined with in-situ stress data of SV > SH > Sh, core sampling of the structural features of shallow earth crust rock formations reveals that the vertical principal stress plays a leading role in normal fault activity. Moreover, measured maximum in-situ principal stress trends towards the northeast-east direction and reflects present tensile properties, with dextral activity, of the Jinzhou segment. The results confirm the previous relevant studies, enriching the dynamics data and facilitating the understanding of the active features of the north segment of the Jinzhou fracture belt.
-
表 1 辽宁省盖州市600 m钻孔水压致裂地应力测量结果
Table 1. Results of in-situ stress measurement in 600 m borehole in Gaizhou city, Liaoning
序号 测段中心深度
(m)压力(MPa) 主应力(MPa) SH方向 Pb Ps Pr PH P0 SH Sh SV T 1 63.48 13.48 5.49 3.98 0.63 0.63 5.82 3.98 1.68 7.99 2 83.44 10.99 3.88 3.10 0.83 0.83 4.59 3.10 2.21 7.11 3 86.76 12.34 2.85 2.48 0.87 0.87 3.72 2.48 2.30 9.49 4 89.26 12.36 2.38 2.04 0.89 0.89 2.85 2.04 2.37 9.98 N54°E 5 110.39 13.57 4.72 3.40 1.10 1.10 4.38 3.40 2.93 8.85 6 121.63 12.61 5.39 3.72 1.22 1.22 4.55 3.72 3.22 7.22 7 141.10 11.32 3.03 2.66 1.41 1.41 3.54 2.66 3.74 8.29 N53°E 8 164.35 13.05 4.73 4.00 1.64 1.64 5.63 4.00 4.36 8.32 9 189.50 13.34 7.38 5.13 1.90 1.90 6.11 5.13 5.02 5.96 10 209.60 18.69 8.43 7.46 2.10 2.10 11.85 7.46 5.55 10.26 N55°E 11 220.45 12.05 7.12 6.41 2.20 2.20 9.91 6.41 5.84 4.93 12 234.13 15.34 8.04 6.35 2.34 2.34 8.67 6.35 6.20 7.30 13 255.00 16.76 9.55 6.70 2.55 2.55 8.00 6.70 6.76 7.21 14 279.60 15.77 6.69 5.58 2.80 2.80 7.25 5.58 7.41 9.08 15 295.65 12.60 5.71 5.06 2.96 2.96 6.51 5.06 7.83 6.89 16 305.81 17.38 6.05 4.90 3.06 3.06 5.59 4.90 8.10 11.33 N81°E 17 340.73 15.87 6.72 6.18 3.41 3.41 8.41 6.18 9.03 9.15 18 342.73 16.94 6.68 6.34 3.43 3.43 8.91 6.34 9.08 10.26 19 363.40 14.77 7.67 6.37 3.63 3.63 7.81 6.37 9.63 7.10 20 382.20 21.89 9.89 8.54 3.82 3.82 11.91 8.54 10.13 12.00 21 402.00 17.16 8.94 7.10 4.02 4.02 8.34 7.10 10.65 8.22 N57°E 22 444.90 16.29 8.85 7.66 4.45 4.45 9.68 7.66 11.79 7.44 23 483.71 22.25 10.06 9.78 4.84 4.84 14.44 9.78 12.82 12.19 24 513.27 13.00 8.14 7.25 5.13 5.13 8.48 7.25 13.60 4.86 25 532.20 17.90 8.30 7.60 5.32 5.32 9.18 7.60 14.10 9.60 N68°E 26 553.90 17.82 8.65 7.88 5.54 5.54 9.45 7.88 14.68 9.17 27 591.00 15.56 9.42 9.27 5.91 5.91 12.48 9.27 15.66 6.14 注:Pb.岩石原地破裂压力;Pr.破裂面重张压力;Ps.破裂面瞬时关闭压力;PH.静水柱压力;P0.孔隙压力;T.岩石抗拉强度;Sh.水平最小主应力;SH.水平最大主应力;Sv.根据上覆岩石埋深计算的垂向主应力(岩石容重取2.65 g/cm3). -
[1] Altmatov, I.T., Vdovin, K.D., Kojogulov, K.C., et al., 1987. State of Stress in Rock and Rock-Burst Proneness in Seismic Active Folded Areas. 6th ISRM Congress, Montreal, 749-751. http://www.onepetro.org/conference-paper/ISRM-6CONGRESS-1987-139 [2] Byerlee, J., 1978. Friction of Rocks. Pure and Applied Geophysics, 116(4-5): 615-626. doi: 10.1007/BF00876528 [3] Chen, Q.C., An, M.J., Li, F.Q., 1998. Theoretical Discussion on 3D Hydraulic Fracturing In Situ Stress Measurement. Journal of Geomechanics, 4(1): 37-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX801.005.htm [4] Chen, Q.C., An, Q.M., Sun, D.S., et al., 2010. Current In-Situ Stress State of Shanxi Basin and Analysis of Earthquake Risk. Acta Geoscientica Sinica, 31(4): 541-548 (in Chinese with English abstract). http://www.oalib.com/paper/1558081 [5] Deng, Q.D., Wang, T.M., Li J.G., et al., 1976. A Discussion on Source Model of Haicheng Earthquake. Scientia Geologica Sinica, (3): 195-204 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX197603000.htm [6] Ding, G.Y., 1982. Discussion on Basic Characteristics of Active Belts in China. Seismological Press, Beijing (in Chinese). [7] Feng, C.J., Chen, Q.C., Tan, C.X., et al., 2013. Analysis on Current In-Situ Stress State in Northern Segment of Longmenshan Fault Belt. Progress in Geophysics, 28(3): 1109-1121(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201303001.htm [8] Feng, C.J., Chen, Q.C., Wu, M.L., et al., 2012. Analysis of Hydraulic Fracturing Stress Measurement Data—Discussion of Methods Frequently Used to Determine Instantaneous Shut-In Pressure. Rock and Soil Mechanics, 33(7): 2149-2159 (in Chinese with English abstract). http://www.researchgate.net/publication/279602328_Analysis_of_hydraulic_fracturing_stress_measurement_data-discussion_of_methods_frequently_used_to_determine_instantaneous_shut-in_pressure [9] Gu, H.D., Chen, Y.T., Gao, X.L., et al., 1976. Focal Mechanism of Haicheng, Liaoning Province, Earthquake February 4, 1975. Acta Geophysica Sinica, 19(4): 270-285 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX197604005.htm [10] Haimson, B.C., Cornet, F.H., 2003. ISRM Suggested Methods for Rock Stress Estimation—Part 3: Hydraulic Fracturing (HF) and/or Hydraulic Testing of Pre-Existing Fractures (HTPF). International Journal of Rock Mechanics & Mining Sciences, 40(7): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002 [11] Hayashi, K., Haimson B.C., 1991. Characteristics of Shut-In Curves in Hydraulic Fracturing Stress Measurements and Determination of In Situ Minimum Compressive Stress. Journal of Geophysical Research, 96(B11): 18311-18321. doi: 10.1029/91JB01867 [12] Institute of Geomechanics, Chinese Academy of Geological Sciences, Seismic Geological Brigade of China Earthquake Administration, 1981. The Principle and Application of In-Situ Stress Measurement. Geological Publishing House, Beijing (in Chinese). [13] Li, J.H., Yang, Z., 1987. Active Fault in Liaodong Peninsula and the Tectonic Setting of the Jinzhou Earthquake of Magnitude 6. North China Earthquake Sciences, 5(2): 81-86 (in Chinese with English abstract). [14] Li, X., Li, Y., Jiang, H., et al., 1998. Shock Absorption Effect of Jinzhou Fault. Seismological Research of Northeast China, 14(6): 24-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DDYJ802.004.htm [15] Liaoning Bureau of Geology and Mineral Resources, 1989. Regional Geology of Liaoning Province. Geological Publishing House, Beijing (in Chinese). [16] Liaoning Earthquake Administration, 1996. Liaoning Province Records, Earthquake Records. Liaoning Science and Technology Press, Shenyang (in Chinese). [17] Sun, Y., Tan, C.X., Li, K.S., et al., 1998. Quantitative Evaluation of Regional Crustal Stability. Geological Publishing House, Beijing (in Chinese). [18] Sun, Y., Tan, C.X., Miao, P.S., et al., 2012. Seismogeology and Earthquake Prediction. Geological Publishing House, Beijing (in Chinese). [19] Tan, C.X., Shi, L., Sun, W.F., et al., 2004. Research on Tectonic Stress Plane. Chinese Journal of Rock Mechanics and Engineering, 23(23): 3970-3978 (in Chinese with English abstract). http://www.researchgate.net/publication/289168161_Research_on_tectonic_stress_plane [20] Tan, C.X., Sun, W.F., Zhang, C.S., et al., 2007. An Analysis on Variation of Crustal Stress States at the Shallow Part of Upper Crust in Deep-Cut Valley Region. Progress in Geophysics, 22(4): 1353-1359 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200704047.htm [21] Tan, C.X., Sun, Y., Wang, L.J., 2003. Some Problems of In-Situ Crustal Stress Measurements. Journal of Geomechanics, 9(3): 275-280(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzlxxb200303010 [22] Tan, C.X., Wang, R.J., Sun, Y., et al., 2004. Numerical Modeling Estimation of the'Tectonic Stress Plane'(TSP) Beneath Topography with Quasi-U-Shaped Valleys. International Journal of Rock Mechanics and Mining Sciences, 41(2): 303-310. doi: 10.1016/S1365-1609(03)00096-0 [23] Wan, B., Li, Y.T., Zheng, S.C., 2010. Determination of Seismogenic Structure for the East of Pulandian M6.0 Earthquake in 1861. Earthquake Research in China, 26(3): 304-313 (in Chinese with English abstract). [24] Wang, L., 1988. A Discussion on the Stability of the Regional Crust with Interpretation on Structures by Remote Sensing Images in Yingkou Area. Liaoning Geology, (4): 360-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD198804006.htm [25] Wang, L.J., Pan, L.Z., Liao, C.T., et al., 1991. In-Situ Stress Measurement and Its Application in Engineering. Geological Publishing House, Beijing (in Chinese). [26] Wang, T.M., Xiang, H.F., Fang, Z.J., et al., 1976. A Study of the Geotectonic Background and Seismogenic Structures of Haicheng Earthquake. Scientia Geologica Sinica, (3): 205-212(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkx197603001.htm [27] Wang, Z.G., Liu, C., Feng, X., et al., 2009. Earthquake Space Distribution and Its Relationships with Main Faults, Deep Structure and Stress Field in Northeast China. Global Geology, 28(4): 513-519 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ200904017&dbcode=CJFD&year=2009&dflag=pdfdown [28] Wu, M.D., 1997. The Features of Activities and Seismic at Jinzhou-Chaoyang Fault Belt in Liaoning Province. World Geology, 16(1): 39-42, 48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJDZ199701004.htm [29] Wu, M.L., Zhang, C.S., Liao, C.T., et al., 2005. The Recent State of Stress in the Central Qinghai-Tibet Plateau According to In-Situ Stress Measurements. Chinese Journal of Geophysics, 48(2): 327-332 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqwlxb200502014.aspx [30] Wu, M.L., Zhang, Y.Q., Liao, C.T., et al., 2010. Preliminary Results of In-Situ Stress along the Longmenshan Fault Zone after the Wenchuan Ms8.0 Earthquake. Acta Geologica Sinica, 84(9): 1292-1299 (in Chinese with English abstract). [31] Xia, H.K., 1991. The Feature of Jinzhou Active Fault Zone and Its Relation with Seismicity. North China Earthquake Sciences, 9(2): 21-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HDKD199102002.htm [32] Xia, H.K., Zhang, X.Z., 1986. Landforms of the Coastal Area of the Liaodong Peninsula and Their Representative Neotectonic Motion. Seismology and Geology, 8(1): 41-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198601007.htm [33] Xie, F.R., Chen, Q.C., Cui, X.F., et al., 2003. Study of Crustal Stress Environment in China. Geological Publishing House, Beijing (in Chinese). [34] Zhang, B.C., 1996. Pore Pressure, Fault Slip Criterion and Influence of Reservoir Impounding. In: Su, K.Z., Li, F.Q., Zhang, B.C., et al., eds., Integrated Research on the Stress Field and Pore Pressure at the Gorges Site. Seismological Press, Beijing (in Chinese). [35] Zhang, P., Qin, X.H., Feng, C.J., et al., 2013. In-Situ Stress Measurement of Deep Borehole in Shandong Segment of Tan-Lu Fracture Belt and Analysis of Its Activity. Rock and Soil Mechanics, 34(8): 2329-2335 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ytlx201308042 [36] Zhao, W.F., 1989. The Feature of Seismic Structural in Liaoning Province. Northeastern Seismological Research, 5(3): 15-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DDYJ198903001.htm [37] Zoback, M.D., Healy, J.H., 1992. In-Situ Stress Measurements to 3.5 km Depth in the Cajon Pass Scientific Research Borehole: Implications for the Mechanics of Crustal Faulting. Journal of Geophysical Research, 97(B4): 5039-5057. doi: 10.1029/91JB02175 [38] 陈群策, 安美建, 李方全, 1998. 水压致裂法三维地应力测量的理论探讨. 地质力学学报, 4(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX801.005.htm [39] 陈群策, 安其美, 孙东生, 等, 2010. 山西盆地现今地应力状态与地震危险性分析. 地球学报, 31(4): 541-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004007.htm [40] 邓起东, 王挺梅, 李建国, 等, 1976. 关于海城地震震源模式的讨论. 地质科学, (3): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197603000.htm [41] 丁国瑜, 1982. 中国内陆活动断裂基本特征的探讨. 北京: 地震出版社. [42] 丰成君, 陈群策, 谭成轩, 等, 2013. 龙门山断裂带东北段现今地应力环境研究. 地球物理学进展, 28(3): 1109-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303001.htm [43] 丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析——对瞬时关闭压力PS的常用判读方法讨论. 岩土力学, 33(7): 2149-2159. doi: 10.3969/j.issn.1000-7598.2012.07.035 [44] 顾浩鼎, 陈云泰, 高祥林, 等, 1976.1975年2月4日辽宁省海城地震的震源机制. 地球物理学报, 19(4): 270-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197604005.htm [45] 中国地质科学院地质力学研究所, 国家地震局地震地质大队, 1981. 地应力测量的原理和应用. 北京: 地质出版社. [46] 李建华, 杨喆, 1987. 辽东半岛活动断裂和金州6级地震的构造背景. 华北地震科学, 5(2): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD198702010.htm [47] 李新, 李涯, 姜华, 等, 1998. 金州断裂降震效应初探. 东北地震研究, 14(6): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ802.004.htm [48] 辽宁地矿局, 1989. 辽宁省区域地质志. 北京: 地质出版社. [49] 辽宁省地震局, 1996. 辽宁省志·地震志. 沈阳: 辽宁省科技出版社. [50] 孙叶, 谭成轩, 李开善, 等, 1998. 区域地壳稳定性定量化评价. 北京: 地质出版社. [51] 孙叶, 谭成轩, 苗培实, 等, 2012. 地震地质与地震预报. 北京: 地质出版社. [52] 谭成轩, 石玲, 孙炜锋, 等, 2004. 构造应力面研究. 岩石力学与工程学报, 23(23): 3970-3978. doi: 10.3321/j.issn:1000-6915.2004.23.010 [53] 谭成轩, 孙炜锋, 张春山, 等, 2007. 深切峡谷地区地壳浅表层地应力状态变化分析. 地球物理学进展, 22(4): 1353-1359. doi: 10.3969/j.issn.1004-2903.2007.04.048 [54] 谭成轩, 孙叶, 王连捷, 2003. 地应力测量值得注意的若干问题. 地质力学学报, 9(3): 275-280. doi: 10.3969/j.issn.1006-6616.2003.03.010 [55] 万波, 李宇彤, 郑双成, 2010.1861年普兰店东6级地震发震构造判定. 中国地震, 26(3): 304-313. doi: 10.3969/j.issn.1001-4683.2010.03.006 [56] 王丽, 1988. 从遥感影像的构造解译讨论营口地区区域地壳稳定性. 辽宁地质, (4): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-LOAD198804006.htm [57] 王连捷, 潘立宙, 廖椿庭, 等, 1991. 地应力测量及其在工程中的应用. 北京: 地质出版社. [58] 王挺梅, 向宏发, 方仲景, 等, 1976. 海城地震地质构造背景与发震构造的探讨. 地质科学, (3): 205-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197603001.htm [59] 王兆国, 刘财, 冯晅, 等, 2009. 中国东北地区地震空间分布与主要断裂带、深部构造及应力场关系. 世界地质, 28(4): 513-519. doi: 10.3969/j.issn.1004-5589.2009.04.016 [60] 吴明大, 1997. 金州朝阳断裂带的活动特点与地震. 世界地质, 16(1): 39-42, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ199701004.htm [61] 吴满路, 张春山, 廖椿庭, 等, 2005. 青藏高原腹地现今地应力测量与应力状态研究. 地球物理学报, 48(2): 327-332. doi: 10.3321/j.issn:0001-5733.2005.02.014 [62] 吴满路, 张岳桥, 廖椿庭, 等, 2010. 汶川地震后沿龙门山断裂带原地应力测量初步结果. 地质学报, 84(9): 1292-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201009004.htm [63] 夏怀宽, 1991. 辽宁金州活动断裂带特征和地震. 华北地震科学, 9(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD199102002.htm [64] 夏怀宽, 张先泽, 1986. 辽东半岛沿海地区海岸地貌及其所反映的新构造运动. 地震地质, 8(1): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198601007.htm [65] 谢富仁, 陈群策, 崔效锋, 等, 2003. 中国大陆地壳应力环境研究. 北京: 地质出版社. [66] 张伯崇, 1996. 孔隙压力、断层滑动准则和水库蓄水的影响. 苏恺之, 李方全, 张伯崇, 等, 编, 长江三峡坝区地壳应力与孔隙水压力综合研究. 北京: 地震出版社. [67] 张鹏, 秦向辉, 丰成君, 等, 2013. 郯庐断裂带山东段深孔地应力测量及其现今活动性分析. 岩土力学, 34(8): 2329-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308042.htm [68] 赵文峰, 1989. 辽宁地震构造特征. 东北地震研究, 5(3): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ198903001.htm