• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    芦山地震同震和震后地表形变及重力变化的理论模拟

    邓明莉 孙和平 徐建桥 祝意青

    邓明莉, 孙和平, 徐建桥, 祝意青, 2014. 芦山地震同震和震后地表形变及重力变化的理论模拟. 地球科学, 39(9): 1373-1382. doi: 10.3799/dqkx.2014.120
    引用本文: 邓明莉, 孙和平, 徐建桥, 祝意青, 2014. 芦山地震同震和震后地表形变及重力变化的理论模拟. 地球科学, 39(9): 1373-1382. doi: 10.3799/dqkx.2014.120
    Deng Mingli, Sun Heping, Xu Jianqiao, Zhu Yiqing, 2014. Theoretical Simulation of Co-Seismic and Post-Seismic Deformations and Gravity Changes of Lushan Earthquake. Earth Science, 39(9): 1373-1382. doi: 10.3799/dqkx.2014.120
    Citation: Deng Mingli, Sun Heping, Xu Jianqiao, Zhu Yiqing, 2014. Theoretical Simulation of Co-Seismic and Post-Seismic Deformations and Gravity Changes of Lushan Earthquake. Earth Science, 39(9): 1373-1382. doi: 10.3799/dqkx.2014.120

    芦山地震同震和震后地表形变及重力变化的理论模拟

    doi: 10.3799/dqkx.2014.120
    基金项目: 

    国家自然科学基金项目 41021003

    国家自然科学基金项目 41074053

    中国科学院重点项目 KZCX2-YW-133

    详细信息
      作者简介:

      邓明莉(1983-), 女, 博士研究生, 主要从事地球重力场与地震研究.E-mail: dengml@asch.whigg.ac.cn

    • 中图分类号: P315.72

    Theoretical Simulation of Co-Seismic and Post-Seismic Deformations and Gravity Changes of Lushan Earthquake

    • 摘要: 为了研究芦山地震的孕震过程和震源区的长期构造过程以及解释实测的震后形变和重力资料, 采用分层介质模型, 利用数值模拟的方法, 考虑区域流变系数, 计算了地震引起的地表同震、震后的形变和重力变化以及区域内部分GPS与重力连续观测台站的震后形变和重力变化的时间序列.结果表明: 芦山地震的地表同震形变显示出发震断层明显的逆冲特性; 粘弹性松弛效应引起的震后地表形变和重力变化比同震形变和重力变化的范围明显扩大, 但随着粘滞系数的增加, 变化量明显减小; 观测台站的震后变化时变曲线显示震后形变和重力变化在震后50 a间变化显著, 100 a后基本平缓, 趋于稳定; 模拟计算的GPS台站中除了MEIG台和MYAN台以外, 其余台站的震后观测必须考虑粘弹性松弛的影响.

       

    • 图  1  芦山地震滑动模型

      模型1为刘成利等(2013)给出的模型;模型2为王卫民等(2013)给出的模型

      Fig.  1.  The slip distribution models of Lushan earthquake

      图  2  地表同震形变和重力变化

      上图为模型1模拟的结果,下图为模型2模拟的结果;紫色和棕色矩形分别为模型1和模型2断层面在地表的投影.a.地表同震水平形变;b.地表垂直形变;c.同震重力变化

      Fig.  2.  Surface coseismic deformation and gravity changes

      图  3  不同粘滞系数模型引起的10 a后地表水平形变

      图a, b, c, d分别对应模型A, 模型B, 模型C, 模型D模拟的结果

      Fig.  3.  Surface horizontal deformation caused by the models with different viscosity coefficients 10 years after the earthquake

      图  4  不同粘滞系数模型引起的10 a后地表垂直形变

      图a, b, c, d分别对应模型A、模型B、模型C、模型D模拟的结果

      Fig.  4.  Surface vertical deformation caused by the models with different viscosity coefficients 10 years after the earthquake

      图  5  粘弹性松弛效应引起的震后200 a形变和重力变化

      a.总的水平形变;b.总的垂直形变;c.总的重力变化

      Fig.  5.  The surface deformation and gravity change caused by viscoelastic relaxation 200 years after the earthquake

      图  6  10个GPS和6个重力连续观测台站的震后形变和重力变化时间序列

      Fig.  6.  Time series of the post-seismic deformation and gravity changes of 10 GPS and 6 gravity continuous observation stations

      表  1  芦山地震区域分层介质模型参数

      Table  1.   Parameters of the layered earth model of Lushan earthquake

      层位 深度(km) Vp(km/s) Vs(km/s) 密度(kg/m3) 平均泊松比
      软沉积层 1 2.5 1.2 2 100
      硬沉积层 1 4.0 2.1 2 400
      上地壳 20 6.1 3.5 2 750 0.26
      中地壳 20 6.3 3.6 2 800
      下地壳 4 7.2 4.0 3 100
      地壳以下 8.0 4.6 3 350 0.25
      下载: 导出CSV

      表  2  GPS连续观测台站同震形变模拟结果与实测结果的比较

      Table  2.   Comparison of the simulated coseismic deformation with the measured results at GPS stations

      GPS台站 经向形变(mm) 纬向形变(mm) 垂向形变(mm)
      观测结果 模拟结果 观测结果 模拟结果 观测结果 模拟结果
      LESH -2.7(±1.2) -2.064 0 0.8(±1.0) 1.842 00 0.3(±4.9) 0.028 96
      LUZH -0.5(±0.6) -0.299 4 -0.7(±0.5) 0.183 50 3.9(±2.7) 0.055 11
      MEIG -1.4(±1.2) -0.118 2 -0.3(±1.1) 0.195 30 -0.4(±5.4) -0.056 94
      MYAN -0.5(±1.1) -0.124 8 0.1(±1.0) 0.010 71 -1.4(±4.7) -0.091 12
      QLAI -11.6(±1.0) -3.941 0 0.8(±0.9) 2.540 00 -4.9(±4.1) -0.790 10
      ROXI -0.1(±1.2) -0.985 9 -0.5(±1.1) 0.607 50 -4.3(±5.8) 0.101 90
      YAAN -7.0(±1.1) -3.283 0 6.4(±1.0) 0.873 30 -3.5(±4.5) -1.207 00
      注: 括号中数字表示观测误差;模拟结果均为采用模型1计算得到.
      下载: 导出CSV

      表  3  成都台和姑咱台同震重力变化模拟结果与实测结果的比较

      Table  3.   Comparison of the simulated coseismic gravity changes with the measured results at Chengdu station and Guza station

      重力台站 模拟的同震重力变化(10-8 m·s-2) 实测同震重力变化(10-8 m·s-2)
      成都台 0.10(±15) 0
      姑咱台 0.03(±15) -10
      注: 括号中数字表示观测误差;模拟结果均为采用模型1计算得到.
      下载: 导出CSV
    • [1] Bürgmann, R., Dresen, G., 2008. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations. Ann. Rev. Earth Planet. Sci., 36: 531-567. doi: 10.1146/annurev.earth.36.031207.124326
      [2] Diao, F.Q., 2011. The Study of Coseismic and Postseismic Deformation Based on GPS Observation (Dissertation). Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan (in Chinese with English abstract).
      [3] Diao, F.Q., Xiong, X., Wang, R.J., 2010. Mechanism of Transient Post-Seismic Deformation Following the 2001 Mw7.8 Kunlun (China) Earthquake. Pure and Applied Geophysics, 168: 767-779. doi: 10.1007/s00024-010-0154-5
      [4] Du, F., Long, F., Ruan, X., et al., 2013. The Ms7.0 Lushan Earthquake and the Relationship with the M8.0 Wenchuan Earthquake in Sichuan, China. Chinese J. Geophys., 56(5): 1772-1783 (in Chinese with English abstract). doi: 10.6038/cjg20130535
      [5] Freed, A.M., 2007. Afterslip (and Only Afterslip) Following the 2004 Parkfield, California Earthquake. Geophys. Res. Lett., 34. doi: 10.1029/2006GL029155
      [6] Liu, C.L., Zheng, Y., Ge, C., et al., 2013. Rupture Process of the M7.0 Lushan Earthquake. Science in China (Series D), 43(6): 1020-1026 (in Chinese). doi: 10.1007/s11430-01304639-9
      [7] Liu, J., Yi, G.X., Zhang, Z.W., et al., 2013. Introduction to the Lushan, Sichuan Ms7.0 Earthquake on 20 April 2013. Chinese J. Geophys., 56(4): 1404-1407 (in Chinese with English abstract). doi: 10.6038/cjg20130434
      [8] Long, F., Ni, S.D., Wen, X.Z., 2011. Variations of Moho Depth and Velocity Ratio along and Surrounding the Longmenshan Fault Zone from Tele-Seismic Receiver Functions. Acta Geoscientica Sinica, 32(4): 438-446 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201104014.htm
      [9] Lorenzo-Martín, F., Roth, F., Wang, R., 2006. Inversion for Rheological Parameters from Postseismic Surface Deformation Associated to the 1960 Valdivia Earthquake, Chile. Geophys. J. Int., 164: 75-87. doi: 10.1111/j.1365-246X.2005.02803.x
      [10] Lü, J., Wang, X.S., Su, J.R., et al., 2013. Hypocentral Location and Source Mechanism of the Ms7.0 Lushan Earthquake Sequence. Chinese J. Geophys., 56(5): 1753-1763 (in Chinese with English abstract). doi: 10.6038/cjg20130533
      [11] Nur, A., Mavok, G., 1974. Postseismic Viscoelastic Rebound. Science, 183: 204-206. doi:10.1126/ science.183.4121.204
      [12] Peltzer, G., Rosen, P., Rogez, F., et al., 1998. Poroelastic Rebound along the Landers 1992 Earthquake Surface Rupture. J. Geophys. Res., 103(B12): 30131-30145. doi: 10.1029/98JB02302
      [13] Pollitz, F.F., Peltzer, G., Bürgmann, R., 2000. Mobility of the Continental Mantle: Evidence from Postseismic Geodetic Observations Following the 1992 Landers Earthquake. J. Geophys. Res., 105(B4): 8035-8054. doi: 10.1029/1999JB900380
      [14] Reilinger, R.E., Ergintav, S., Burgmann, R., et al., 2000. Coseismic and Postseismic Fault Slip for the 17 August 1999, M=7.5, Izmit, Turkey Earthquake. Science, 289: 1519-1523. doi:10.1126/ SCIENCE.289.5484.1519
      [15] Ryder, I., Parsons, B., Wright, T.J., et al., 2007. Post-Seismic Motion Following the 1997 Manyi (Tibet) Earthquake: InSAR Observations and Modeling. Geophys. J. Int., 169: 1009-1027. doi:10.1111/j.1365 -246X.2006.03312.x
      [16] Segall, P., Davis, J.L., 1997. GPS Applications for Geodynamics and Earthquake Studies. Ann. Rev. Earth Planet. Sci., 25: 301-36. doi: 10.1146/annurev.earth.25.1.301
      [17] Shao, Z.G., Wang, R.J., Wu, Y.Q., et al., 2011. Rapid Afterslip and Short-Term Viscoelastic Relaxation Following the 2008 Mw7.9 Wenchuan Earthquake. Earthq. Sci., 24: 163-175. doi:10.1007/ s11589-010-0781-z
      [18] Shen, Z.K., Lü, J.N., Wang, M., et al., 2005. Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. J. Geophys. Res., 110, B11409. doi: 10.1029/2004JB003421
      [19] Wang, R., Roth, F., Lorenzo-Martín, F., 2006. PSGRN/PSCMP—A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory. Computers and Geosciences, 32(4): 527-541. doi: 10.1016/j.cageo.2005.08.006
      [20] Wang, W.M., Hao, J.L., Yao, Z.X., 2013. Preliminary Result for Rupture Process of Apr. 20, 2013, Lushan Earthquake, Sichuan, China. Chinese J. Geophys., 56(4): 1412-1417 (in Chinese with English abstract). doi: 10.6038/cjg20130436
      [21] Wu, Y.Q., Jiang, Z.S., Wang, M., et al., 2013. Preliminary Results of the Co-Seismic Displacement and Pre-Seismic Strain Accumulation of the Lushan Ms7.0 Earthquake Reflected by the GPS Surveying. Chin. Sci. Bull., 58(20): 1910-1916 (in Chinese). doi: 10.1007/s11434-013-5998-5
      [22] Xie, Z.J., Jin, B.K., Zheng, Y., et al., 2013. Source Parameters Inversion of the 2013 Lushan Earthquake by Combining Teleseismic Waveforms and Local Seismograms. Science in China (Series D), 43: 1010-1019 (in Chinese). doi: 10.1007/s11430-013-4640-3
      [23] Xu, X.W., Chen, G.H., Yu, G.H., et al., 2013. Seismogenic Structure of Lushan Earthquake and Its Relationship with Wenchuan Earthquake. Earth Science Frontiers, 20(3): 11-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201303002
      [24] Zeng, X.F., Luo, Y., Han, L.B., et al., 2013. The Lushan Ms7.0 Earthquake on 20 April 2013: A High-Angle Thrust Event. Chinese J. Geophys., 56(4): 1418-1424 (in Chinese with English abstract). doi:10.6038/ cjg20130437
      [25] Zhang, C.J., Shi, Y.L., Ma, L., 2009. Numerical Simulation of Crust Rheological Property Reflected by Post-Seismic Deformation of Kunlun Large Earthquake. Rock and Soil Mechanics, 30(9): 2552-2558 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX200909005.htm
      [26] Zhang, Y., Xu, L.S., Chen, Y.T., 2013. Rupture Process of the Lushan 4.20 Earthquake and the Preliminary Analysis on the Disaster-Causing Mechanism. Chinese J. Geophys., 56(4): 1408-1411 (in Chinese with English abstract). doi: 10.6038/cjg20130435
      [27] Zhou, Q.Y., 2011. Crustal Structure of South Longmenshan Fault Zone from Teleseismic Receive Functions (Dissertation). Institute of Earthquake Science, China Earthquake Administration, Beijing (in Chinese with English abstract).
      [28] 刁法启, 2011. 基于GPS观测的同震、震后形变研究(博士学位论文). 武汉: 中国科学院测量与地球物理研究所.
      [29] 杜方, 龙锋, 阮祥, 等, 2013. 四川芦山7.0级地震及其与汶川8.0级地震的关系. 地球物理学报, 56(5): 1772-1783. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305036.htm
      [30] 刘成利, 郑勇, 葛粲, 等, 2013.2013年芦山7.0级地震的动态破裂过程. 中国科学(D辑), 43(6): 1020-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306010.htm
      [31] 刘杰, 易桂喜, 张致伟, 等, 2013.2013年4月20日四川芦山Ms7.0地震介绍. 地球物理学报, 56(4): 1404-1407.
      [32] 龙锋, 倪四道, 闻学泽, 2011. 用远震接收函数研究龙门山断裂带与其邻区的莫霍面深度及波速比分布. 地球学报, 32(4): 438-446. doi: 10.3975/cagsb.2011.04.07
      [33] 吕坚, 王晓山, 苏金蓉, 等, 2013. 芦山7.0级地震序列的震源位置与震源机制解特征. 地球物理学报, 56(5): 1753-1763. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305034.htm
      [34] 王卫民, 郝金来, 姚振兴, 2013.2013年4月20日四川芦山地震震源破裂过程反演初步结果. 地球物理学报, 56(4): 1412-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304038.htm
      [35] 武艳强, 江在森, 王敏, 等. 2013. GPS监测的芦山7.0级地震前应变积累及同震位移场初步结果. 科学通报, 58(20): 1910-1916. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320005.htm
      [36] 谢祖军, 金笔凯, 郑勇, 等, 2013. 近远震波形反演2013年芦山地震震源参数. 中国科学(D辑), 43: 1010-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306009.htm
      [37] 徐锡伟, 陈桂华, 于贵华, 等, 2013. 芦山地震发震构造及其与汶川地震关系讨论. 地学前缘, 20(3): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303002.htm
      [38] 曾祥方, 罗艳, 韩立波, 等. 2013.2013年4月20日四川芦山MS7.0地震: 一个高角度逆冲地震. 地球物理学报, 56(4): 1418-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304039.htm
      [39] 张晁军, 石耀林, 马丽, 2009. 昆仑山大地震震后形变反映的地壳岩石流变特性. 岩土力学, 30(9): 2552-2558. doi: 10.3969/j.issn.1000-7598.2009.09.002
      [40] 张勇, 许力生, 陈运泰, 2013. 芦山4.20地震破裂过程及其致灾特征初步分析. 地球物理学报, 56(4): 1408-1411. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304037.htm
      [41] 周青云, 2011. 龙门山断裂带南段地壳的接收函数方法研究(硕士论文). 北京: 中国地震局地震预测研究所.
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  3104
    • HTML全文浏览量:  101
    • PDF下载量:  535
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-01-05
    • 刊出日期:  2014-09-01

    目录

      /

      返回文章
      返回