A Coupled Darcy-Brinkman-NS Simultation Model of Wellbore Effect of an Monitor Well
-
摘要: 利用3种不同水流运移方程分别模拟井管附近不同区域的水流运动, 基于流量守恒原理实现不同流态区域边界的耦合, 建立了有代表性的观测井-含水层系统场景; 利用建立的耦合模型模拟了观测井-含水层系统中水头的分布, 基于模型模拟数据分析了观测井井筒存在对含水层局部水头分布及地下水水质采样和环境监测结果的影响; 还分析了地下水三维水流强度、观测井井径以及含水层介质参数等对井筒效应的影响规律: 井筒效应在粘土等渗透系数和比单位贮水系数相对较小的含水层介质中更为明显, 其影响随着三维水流强度及观测井井径的增加而增大; 进行了上述参数的敏感性分析, 指出对于同一参数其在不同区间的敏感性比例不同, 对于不同参数观测井井径的敏感性比例最大, 因此在地下水环境监测的工程实践中减小观测井井径是相对快速且有效提高监测和采样精度的方法.Abstract: In this paper, three different flow equations, namely, Darcy law, Brinkman equation and Navier-Stoke equation, are employed to simulate the water movement with different flow conditions within and around the wellbore in a confined aquifer. Based on the principles of continuity, three different flow equations are coupled. The coupled model is used to simulate the impact of wellbore in aquifer on the head distribution and water movement. Results indicate that the influence of wellbore increases with the strength of three-dimensional flow and wellbore diameter. In addition, being compared with the sandy soil aquifer, wellbore effect is more obvious in clay or similar aquifers with lower permeability and smaller storage coefficient. By conducting parameter sensitivity analysis, it also can be found that the sensitivity ratio differs in different value zones for the same parameter, while for different parameters, wellbore effect is more sensitive to well diameter than other parameters.
-
Key words:
- mathematical model /
- wellbore effect /
- monitor well /
- data bias /
- underground water
-
表 1 含水层和井孔参数
Table 1. Main parameters of aquifer and wells
基本参数 值 含水层参数 介质类型 粗砂 渗透系数(m/d) 30 含水层厚度(m) 50 单位储水量(m-1) 0.000 1 抽水井参数 抽水井内径(m) 0.2 抽水流量(m3/d) 8 640 抽水时间(d) 10.289 抽水井位置 (x, y, z)=(0, 0, 0) 抽水井滤管长度(%) 观测井参数 观测井内径(m) 0.2 观测井位置 (x, y)=(2.18, 0) 观测井类型 完整井 表 2 不同组介质的渗流参数取值
Table 2. Hydrological conductivity and Specific storativity of different aquifer media
类型1 类型2 类型3 类型4 含水层介质 细砂 中砂 粗砂 沙砾石 渗透系数(m/d) 7.5 15 30 60 比弹性储水系数(m-1) 7.5e-7 5e-6 1e-5 2e-5 表 3 不同参数的敏感性比例计算
Table 3. Sensitivity ratio of different parameters
参数 变化区间 区间1 区间2 区间3 区间4 抽水井滤管长度 0.020 0.280 0.480 1.350 观测井井径 4.760 1.140 0.530 / 介质类型 0.003 0.006 0.011 / 注: 区间1、2、3和4对于抽水井滤管长度指1%、10%、25%、50%、75%;对于观测井井径指0.02 m、0.05 m、0.10 m、0.20 m;对于介质类型指介质1、2、3、4. -
[1] Bennett, G.D., Patten, E.P., 1962. Constant-Head Pumping Test of a Multi-Aquifer Well to Determine Characteristics of Individual Aquifers. U.S. Geological Survey Water-Supply Paper 1536-G, 181-203. [2] Chen, C.X., 2003. Formation Mechanism of Water Level and Its Determination Method in Conventional Observation Wells for Three-Dimensional Groundwater Flow. Earth Science-Journal of China University of Geosciences, 28(5): 483-491 (in Chinese with English abstract). http://www.researchgate.net/publication/290799751_Formation_mechanism_of_water_level_and_its_determination_method_in_conventional_observation_wells_for_three-dimensional_groundwater_flow [3] Chen, C.X., Hu, L.T., 2008. A Review of the Seepage-Pipe Coupling Model and Its Application. Hydrogeology Engineering Geology, 3: 70-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200803016.htm [4] Chen, C.X., Jiao, J.J., 1999. Numerical Simulation of Pumping Test in Multilayer Wells with Non-Darcian Flow in the Wellbore. Ground Water, 37(3): 465-474. doi: 10.1111/j.1745-6584.1999.tb01126.x [5] Cheng, J.M., Chen, C.X., 2005. An Integrated Linear/Non-Linear Flow Model for the Conduit-Fissure-Pore Media in the Karst Triple Void Aquifer System. Environmental Geology, 47(2): 163-174. doi: 10.1007/s00254-004-1128-7 [6] Cheng, Y., McVay, D.A., Lee, W.J., 2005. BEM for 3D Unsteady-State Flow Problems in Porous Media with a Finite-Conductivity Horizontal Wellbore. Applied Numerical Mathematics, 53(1): 19-37. doi: 10.1016/j.apnum.2004.08.039 [7] Church, P.E., Granato, E., 1996. Bias in Groundwater Data Caused by Well-Bore Flow in Long-Screen Wells. Groundwater, 34(2): 262-273. doi: 10.1111/j.1745-6584.1996.tb01886.x [8] Eduard, M., Igor, P., Sanja, M., 2012. Comparison between Darcy and Brinkman Laws in a Fracture. Applied Mathematics and Computation, 218(14): 7538-7545. doi: 10.1016/j.amc.2012.01.021 [9] Eungyu, P., Zhan, H.B., 2002. Hydraulics of a Finite-Diameter Horizontal Well with Wellbore Storage and Skin Effect. Advances in Water Resources, 25(4): 389-400. doi: 10.1016/S0309-1708(02)00011-8 [10] Eungyu, P., Zhan, H.B., 2003. Horizontal Well Hydraulics in Leaky Aquifers. Journal of Hydrology, 281(1-2): 129-146. doi: 10.1016/S0022-1694(03)00205-1 [11] Giddings, T., 1987. What is an Adequate Screen Length for Monitoring Wells? Opinion I. Ground Water Monitoring Review, 7(2): 96-97. doi: 10.1111/j.1745-6592.1987.tb01049.x/abstract [12] Piquet, J., Queutey, P., 1992. Navier-Stokes Computations Past a Prolate Spheroid at Incidence-I. Low Incidence Case. Computers & Fluids, 21(4): 599-625. http://www.sciencedirect.com/science/article/pii/004579309290009K [13] Rosa, C., Riccardo, B., Luca, F., 2009. Impact of Past Mining Activity on the Quality of Groundwater in SW Sardinia (Italy). Journal of Geochemical Exploration, 100(2-3): 125-132. doi: 10.1016/j.gexplo.2008.02.003 [14] Wen, Z., Huang, G.H., Li, J., et al., 2008. Approximate Analytical Solution of Non-Darcian Flow towards the Well in Confined Aquifer. Journal of Hydraulic Engineering, 39(7), 815-821 (in Chinese with English abstract). http://www.researchgate.net/publication/287550717_Approximate_analytical_solution_of_non-Darcian_flow_towards_the_well_in_confined_aquifer [15] Wen, Z., Huang, G.H., Li, J., et al., 2009. A Numerical Solution of Non-Darcian Flow toward an Extended Well in a Confined Aquifer. Journal of Hydraulic Engineering, 40(4): 398-402 (in Chinese with English abstract). http://www.researchgate.net/publication/288716016_Numerical_solution_of_non-Darcian_flow_toward_an_extended_well_in_a_confined_aquifer [16] Xu, Y., Hu, L.T., Yi, B.Q., 2011. Advances in Numerical Simulation Methods of a "Well-Aquifer" System. Hydrogeology & Engineering Geology, 38(4): 26-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201104006.htm [17] 陈崇希, 2003. 三维地下水流中常规观测孔水位的形成机理及确定方法. 地球科学—中国地质大学学报, 28(5): 483-491. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200305002.htm [18] 陈崇希, 胡立堂, 2008. 渗流-管流耦合模型及其应用综述. 水文地质工程地质, 3: 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200803016.htm [19] 文章, 黄冠华, 李健, 等, 2008. 承压含水层中抽水井附近非达西流的近似解析解. 水利学报, 39(7): 815-821. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200807007.htm [20] 文章, 黄冠华, 李健, 等, 2009. 承压含水层中扩展井附近非达西流数值解. 水利学报, 40(4): 398-402. doi: 10.3321/j.issn:0559-9350.2009.04.003 [21] 徐亚, 胡立堂, 仪彪奇, 2011. 井孔-含水层系统数值模拟方法研究进展. 水文地质工程地质, 38(4): 26-31. doi: 10.3969/j.issn.1000-3665.2011.04.005