• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    断层岩发生张性破裂所需压力预测及油田安全生产建议: 以秦皇岛33-1南和33-2油田明下段控藏断裂为例

    付广 刘哲 胡光义 范廷恩 王超 吕延防

    付广, 刘哲, 胡光义, 范廷恩, 王超, 吕延防, 2014. 断层岩发生张性破裂所需压力预测及油田安全生产建议: 以秦皇岛33-1南和33-2油田明下段控藏断裂为例. 地球科学, 39(9): 1333-1339. doi: 10.3799/dqkx.2014.115
    引用本文: 付广, 刘哲, 胡光义, 范廷恩, 王超, 吕延防, 2014. 断层岩发生张性破裂所需压力预测及油田安全生产建议: 以秦皇岛33-1南和33-2油田明下段控藏断裂为例. 地球科学, 39(9): 1333-1339. doi: 10.3799/dqkx.2014.115
    Fu Guang, Liu Zhe, Hu Guangyi, Fan Ting'en, Wang Chao, Lü Yanfang, 2014. Forecasting of Pressures Required in Tension Fracture of Fault Rock and Suggestions for Safe Production in Oilfield: An Example from Faults Controlling Oil Accumulation of N1m1 in Qinhuangdao 33-1S and Qinhuangdao 33-2 Oilfields. Earth Science, 39(9): 1333-1339. doi: 10.3799/dqkx.2014.115
    Citation: Fu Guang, Liu Zhe, Hu Guangyi, Fan Ting'en, Wang Chao, Lü Yanfang, 2014. Forecasting of Pressures Required in Tension Fracture of Fault Rock and Suggestions for Safe Production in Oilfield: An Example from Faults Controlling Oil Accumulation of N1m1 in Qinhuangdao 33-1S and Qinhuangdao 33-2 Oilfields. Earth Science, 39(9): 1333-1339. doi: 10.3799/dqkx.2014.115

    断层岩发生张性破裂所需压力预测及油田安全生产建议: 以秦皇岛33-1南和33-2油田明下段控藏断裂为例

    doi: 10.3799/dqkx.2014.115
    基金项目: 

    国家自然科学基金 41372154

    国家自然科学基金 41372153

    东北石油大学校青年科学基金 2013NQ127

    详细信息
      作者简介:

      付广(1962-), 男, 教授, 博士生导师, 主要从事油气藏形成与保存研究.E-mail: fuguang2008@126.com

    • 中图分类号: TE112

    Forecasting of Pressures Required in Tension Fracture of Fault Rock and Suggestions for Safe Production in Oilfield: An Example from Faults Controlling Oil Accumulation of N1m1 in Qinhuangdao 33-1S and Qinhuangdao 33-2 Oilfields

    • 摘要: 为了确保秦皇岛33-1南和33-2明下段油田的安全生产, 在实测围岩抗压强度和区域应力场特征研究的基础上, 采用把断层岩看作倾斜岩层, 再与围岩对比的方法, 建立了一套断层岩发生张性破裂所需压力的预测方法, 并利用该方法对秦皇岛33-1南和33-2油田主要目的层——明下段控藏断裂断层岩发生张性破裂所需压力进行了预测.结果表明: 秦皇岛33-1南和33-2油田明下段控藏断裂断层岩发生张性破裂所需压力为25.6~31.3 MPa, 平均为29.4 MPa.如果油田开发过程中注水压力经过从注水井至断裂带压力损失后仍小于25.6~31.3 MPa时, 秦皇岛33-1南和33-2明下段油田可安全注水生产; 否则将造成该油田中的断裂发生张性破裂, 油沿断裂向上逸散至海底.

       

    • 图  1  秦皇岛33-1南和33-2油田明下段油气与断裂分布关系

      Fig.  1.  Distribution relation between oil-gas and faults in Qinhuangdao 33-1S and Qinhuangdao 33-2 oilfields

      图  2  QHD33-1-1井岩心发生张性破裂所需压力与其声波时差和泥质含量关系

      Fig.  2.  Relation among pressure required in tension fracture and interval transit time mudstone content of cores in well QHD33-1-1

      图  3  QHD33-1-1井岩心声波时差与其埋深和泥质含量关系

      Fig.  3.  Relation among interval transit time and depth, mudstone content of cores in well QHD33-1-1

      表  1  QHD33-1-1井10块岩心样品抗压强度实验结果

      Table  1.   Experiment result of crushing resistance intensity of 10 cores in well QHD33-1-1

      样号 Z(m) Sc(MPa) μ B(%) S(MPa) Pw(MPa) St(MPa) δ2(MPa) δ3(MPa) δ1(MPa) K Pf(MPa)
      1 1 240.2 67.9 0.12 35.0 25.7 12.2 5.7 29.2 21.8 26.0 0.59 28.21
      2 1 240.5 68.5 0.12 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.58 28.27
      3 1 240.6 68.2 0.11 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.60 28.25
      4 1 240.7 68.2 0.13 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.55 28.25
      5 1 240.8 68.2 0.13 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.56 28.25
      6 1 241.1 68.2 0.13 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.57 28.26
      7 1 269.8 22.6 0.12 28.0 26.3 12.5 1.9 29.9 22.4 26.7 0.58 24.95
      8 1 269.7 22.6 0.12 28.0 26.3 12.5 1.9 29.9 22.4 26.7 0.58 24.95
      9 1 270.1 22.6 0.14 28.0 26.4 12.5 1.9 29.9 22.4 26.7 0.54 24.96
      10 1 316.3 22.6 0.14 32.0 27.3 13.0 1.9 31.0 23.2 27.6 0.55 26.03
      下载: 导出CSV

      表  2  秦皇岛33-1南和33-2油田明下段控藏断裂断层岩发生张性破裂所需压力预测结果

      Table  2.   Forecasting of pressure required in tension fracture of fault rock of faults controlling oil accumulation of N1m1 in Qinhuangdao 33-1S and Qinhuangdao 33-2 oilfields

      区块 砂体名称 控圈断裂 控砂范围 SGR(%) 倾角(°) Ac(3.28 μs/m) Pf(Mpa) 压力系数
      33-1S 1-3-NmI-1062 F38 -1 051.0 -1 075.5 49.1 61.1 35.6 30.6 3.0
      F14 -1 043.0 -1 055.5 69.7 59.9 24.4 30.8 3.0
      F15 -1 035.0 -1 045.0 85.6 58.1 15.2 31.0 3.1
      1-3-NmI-1098 F33 -1 064.0 -1 078.0 85.5 60.1 23.9 30.6 2.9
      F12 -1 082.5 -1 090.0 66.7 60.2 37.5 30.3 2.8
      F22 -1 079.0 -1 085.0 64.7 56.3 37.3 30.3 2.9
      F19 -1 077.0 -1 081.0 78.1 58.3 31.0 30.4 2.9
      1-3-NmI-1156 F38 -1 149.0 -1 161.0 39.7 61.1 69.0 29.2 2.6
      F19 -1 159.0 -1 163.0 77.8 58.3 55.6 29.3 2.6
      F15 -1 157.0 -1 166.0 41.3 58.1 70.7 29.1 2.6
      1S-1-NmI-1061 F12 -1 037.0 -1 043.0 66.5 60.2 24.0 30.9 3.0
      F15 -1 039.5 -1 053.5 76.7 58.1 20.4 30.9 3.0
      1S-3-NmI-1160 F28 -1 130.5 -1 143.0 68.9 59.1 50.9 29.6 2.7
      F30 -1 133.0 -1 155.0 48.9 59.5 60.3 29.5 2.7
      3-5-NmI-1084 F14 -1 048.0 -1 063.5 88.8 59.9 17.7 30.9 3.0
      F48 -1 042.0 -1 052.0 95.4 55.2 13.1 31.0 3.0
      F8 -1 076.0 -1 081.0 60.8 58.8 38.1 30.3 2.9
      F7 -1 071.0 -1 096.5 62.5 60.7 35.9 30.4 2.9
      F16 -1 063.5 -1 071.0 55.7 58.8 36.6 30.5 2.9
      F1 -1 079.0 -1 102.5 62.5 58.7 38.3 30.3 2.9
      1-3-NmⅡ-1192 F14 -1 171.5 -1 187.0 52.8 59.9 70.1 29.0 2.5
      1-3-NmⅡ-1226 F38 -1 215.5 -1 221.0 45.2 61.1 86.5 28.3 2.4
      F32 -1 202.5 -1 213.0 58.8 59.7 76.8 28.6 2.4
      F33 -1 211.0 -1 223.0 58.4 60.1 79.5 28.4 2.4
      1S-2-NmⅡ-1237 F28 -1 176.5 -1 195.0 88.8 59.1 56.1 29.1 2.5
      F30 -1 176.5 -1 205.0 87.5 59.5 56.7 29.1 2.5
      F12 -1 209.0 -1 218.5 51.7 60.2 81.8 28.4 2.4
      1S-2-NmⅡ-1292 F28 -1 267.0 -1 271.0 59.2 59.1 95.9 27.7 2.2
      F30 -1 273.0 -1 281.5 68.1 59.5 93.9 27.6 2.2
      1-3-NmⅢ-1334 F12 -1 313.0 -1 318.0 86.4 60.2 98.0 27.2 2.1
      F30 -1 319.0 -1 323.0 84.7 59.5 100.5 27.1 2.1
      33-2 2-1-NmI-1064 F8 -1 028.5 -1 046.0 86.1 58.8 13.0 31.1 3.1
      F10 -1 028.5 -1 039.5 86.6 64.6 12.8 31.1 3.1
      2-2-NmI-1064 F8 -1 012.2 -1 023.0 71.4 58.8 14.5 31.3 3.1
      F10 -1 064.0 -1 076.5 56.9 64.6 36.2 30.5 2.9
      F6 -1 058.0 -1 081.5 47.7 57.8 38.3 30.5 2.9
      F1 -1 332.5 -1 345.0 77.3 58.7 107.7 26.9 2.1
      2-1-NmI-1340 F8 -1 299.0 -1 302.0 91.0 58.8 91.8 27.4 2.2
      F10 -1 299.0 -1 302.0 89.9 64.6 92.3 27.4 2.2
      下载: 导出CSV
    • [1] Ding, J.M., Liang, G.P., 1985. Stress Measurement by Hydraulic Fracturing in Oil-Wells of North China. Acta Seismologica Sinica, 7(4): 363-373 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198504001.htm
      [2] Fu, G., Shi, J.J., Lü, Y.F., 2012. An Improvement in Quantitatively Studying Lateral Seal of Faults. Acta Petrolei Sinica, 33(3): 414-418 (in Chinese). http://www.researchgate.net/publication/287678101_An_improvement_in_quantitatively_studying_lateral_seal_of_faults
      [3] Huang, R.Z., 1984. A Model for Predicting Formation Fracture Pressure. Journal of East China Petroleum Institute, 4: 335-347 (in Chinese). http://www.researchgate.net/publication/285299691_A_model_for_predicting_formation_fracture_pressure
      [4] Huang, R.Z., Zhuang, J.J., 1986. A New Method of Predicting Fracture Pressure. Oil Drilling & Production Technology, 3: 1-14 (in Chinese).
      [5] Li, M., Lian, Z.H., Chen, S.C., et al., 2009. Rock Mechanical Parametric Experiments and the Research of Formation Fracture Pressure Prediction. Oil Drilling & Production Technology, 31(5): 15-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZC200905007.htm
      [6] Liu, Q.M., Li, W.P., Zeng, X.G., et al., 2007. Indoor Hydraulic Pressure Cracking Method to Test and Measure Critical Breaking Pressure and Water Resistance Coefficient of Rock Mass. Coal Science and Technology, 35(1): 85-87 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_coal-science-technology_thesis/0201216209968.html
      [7] Liu, Z., Fu, G., Sun, Y.H., et al., 2012a. Comprehensive Evaluation of Fault Lateral Sealing Ability in Qijia-Yuangyanggou Area, Liaohe Depression. Journal of Central South University (Science and Technology), 43(4): 1394-1404 (in Chinese with English abstract). http://www.researchgate.net/publication/287872270_Comprehensive_evaluation_of_fault_lateral_sealing_ability_in_Qijia-Yuanyanggou_area_Liaohe_depression
      [8] Liu, Z., Lü, Y. f., Fu, X.F., et al., 2012b. Quantitative Research on Lateral Seal Ability of Faults in Beier Depression. Joural of Jilin University (Earth Science Edition), 42(2): 353-361 (in Chinese with English abstract). http://www.researchgate.net/publication/287945245_Quantitative_research_on_lateral_seal_ability_of_faults_in_Beier_depression
      [9] Lü, Y.F., Ma, F.J., 2003. Controlling Factors and Classification of Fault Seal. Journal of Jilin University (Earth Science Edition), 33(2): 163-166 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247978560.html
      [10] Wang, H., Fan, H.H., 2009. An Estimation Method of Formation Fracture Pressure. Xinjiang Petroleum Science & Technology, 19(4): 11-13 (in Chinese).
      [11] Yielding, G., 2002. Shale Gouge Ratio-Calibration by Geohistory. In: Koestler, A.G., Hunsdale, R., eds., Hydrocarbon Seal Quantification. NPF Special Publication, 11: 1-15. doi: 10.1016/S0928-8937(02)80003-0
      [12] Zhou, N.Y., Yang, Z.Z., 2011. Overview on Pressure Prediction of Formation Fracture. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 13(1): 36-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CQSG201101013.htm
      [13] 丁健民, 梁国平, 1985. 唐山、天津和沧州地区的油井水力压裂应力测量. 地震学报, 7(4): 363-373. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198504001.htm
      [14] 付广, 史集建, 吕延防, 2012. 断层侧向封闭性定量研究方法的改进. 石油学报, 33(3): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203010.htm
      [15] 黄荣樽, 庄锦江, 1986. 一种新的地层破裂压力预测方法. 石油钻采工艺, 3: 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC198603000.htm
      [16] 黄荣樽, 1984. 地层破裂压力预测模式的探讨. 华东石油学院学报, 4: 335-347. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198404001.htm
      [17] 李敏, 练章华, 陈世春, 等, 2009. 岩石力学参数试验与地层破裂压力预测研究. 石油钻采工艺, 31(5): 15-18. doi: 10.3969/j.issn.1000-7393.2009.05.004
      [18] 刘启蒙, 李文平, 曾先贵, 等, 2007. 室内水力压裂法测试岩体临界破裂压力及阻水系数. 煤炭科学技术, 35(1): 85-87. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200701024.htm
      [19] 刘哲, 付广, 孙永河, 等, 2012a. 辽河坳陷齐家-鸳鸯沟地区断层侧向封闭性综合评价. 中南大学学报(自然科学版), 43(4): 1394-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201204033.htm
      [20] 刘哲, 吕延防, 付晓飞, 等, 2012b. 贝尔凹陷断层侧向封闭能力定量研究. 吉林大学学报(地球科学版), 42(2): 353-361. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202010.htm
      [21] 吕延防, 马福建, 2003. 断层封闭性影响因素及类型划分. 吉林大学学报(地球科学版), 33(2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200302011.htm
      [22] 王河, 樊洪海, 2009. 一种地层破裂压力的估算方法. 新疆石油科技, 19(4): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201103031.htm
      [23] 周拿云, 杨兆中, 2011. 地层破裂压力预测技术综述. 重庆科技学院学报(自然科学版), 13(1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSG201101013.htm
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  2736
    • HTML全文浏览量:  155
    • PDF下载量:  228
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-12-25
    • 刊出日期:  2014-09-01

    目录

      /

      返回文章
      返回