Medium-Low-Enthalpy Geothermal Power-Electricity Generation at Gonghe Basin, Qinghai Province
-
摘要: 青海省是我国地热资源相对丰富的地区, 但其主要地热能开发利用方式长期以来为效率较低的直接利用.以青海东北部地热异常明显的共和盆地为典型研究区, 依据前期地热地质调查和地球物理工作成果, 在盆地北部施工了终孔深度为1 852 m的DR2井, 获取了温度达84.2 ℃的地热流体.在此基础上, 建立了青海省首个试验地热发电站, 设计年平均净发电量为114 kW.与利用高温地热流体发电的西藏羊八井地热电站不同, 青海共和试验地热电站是青藏高原利用中低温地热流体发电的典范, 有望为青海省能源结构优化做出开拓性贡献.总体来看, 共和盆地地热流体温度较高、水量丰富、具有较大的发电潜力, 但在开发利用过程中也应注意结垢问题.Abstract: Qinghai Province is characterized by relatively abundant geothermal resources in China, but geothermal energy utilization has been suffering from low efficiency due to the dominant direct use over a long period. Taking Gonghe Basin located in northeastern Qinghai as the study area, we explore the issue in this paper on the basis of the previous geothermal geological and geophysical investigations. A borehole (DR2) with a depth of 1 852 m in the north part of the basin is drilled and geothermal fluid with a temperature up to 84.2 ℃ can be extracted from DR2, based on which the first geothermal power plant in Qinghai with an annual net electricity generation capacity of 114 kW is established. Different from the Yangbajing geothermal power plant in Tibet where high-temperature geothermal fluids are exploited for electricity generation, the Gonghe pilot power plant in Qinghai is a typical example of middle-low-enthalpy geothermal power generation, which leads the optimization of energy structure in Qinghai Province. In general, the geothermal fluids from Gonghe are featured with comparatively high temperatures and discharge rates, and therefore have a great potential for power generation. However, scaling may occur during the exploitation of Gonghe geothermal fluid in view of its chemical composition, which should be addressed in the process.
-
图 1 共和地质简图及DR2井位(据薛建球等, 2013)
Fig. 1. Simplified geological map of Gonghe Basin and location of Well DR2
表 1 DR2生产井地热水的化学组成
Table 1. Chemical composition of geothermal water sample from Well DR2
分析项目(μg/L) 分析项目(μg/L) 分析项目(μg/L) 分析项目(μg/L) Al3+ nd. F- 3.56 Ag 0.453 Li 9 060 As 0.621 HCO3- 604 Au 0.154 Rb 122 B 26.4 CO32- 2.42 Ba 0.066 Cs 686 Ca2+ 45.7 Cl- 678 Be nd. Sb 12.81 K+ 12.1 NO3- nd. Cd 0.003 Mg2+ 1.82 SO42- 135.6 Co nd. Na+ 576.5 Cr nd. Sr 1.46 Cu nd. Zn2+ 0.04 Ni 0.011 Fe(总) nd. NH4+ 0.59 Pb 0.044 Hg nd. Fe2+ 0.02 Se 0.012 Sn 0.12 SiO2 58.2 Mn nd. V 0.11 CO2 15.4 H2S nd. 注: pH为7.69;温度为84.2 ℃. 表 2 20~90 ℃范围内DR2井地热水对方解石的饱和指数
Table 2. Saturation indices of the geothermal water extracted from DR2 with respect to calcite over a temperature range of 20-90 ℃
温度(℃) 20 30 40 50 60 70 80 90 饱和指数 0.736 0.787 0.851 0.929 1.008 1.093 1.183 1.276 -
[1] Baik, Y.J., Kim, M., Chang, K.C., et al., 2013. A Comparative Study of Power Optimization in Low-Temperature Geothermal Heat Source Driven R125 Transcritical Cycle and HFC Organic Rankine Cycles. Renewable Energy, 54: 78-84. doi: 10.1016/jrenene.2012.08.055 [2] Enrico, B., 2002. Geothermal Energy Technology and Current Status: An Overview. Renewable & Sustainable Energy Reviews, 6(1-2): 3-65. doi: 10.1016/S1346-0321(02)00002-3 [3] Gao, X.W., Li, N., Kang, H., 2008. The Development Status of Geothermal Power Technology. Electric Power Survey & Design, 6(3): 59-62, 80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKC200803019.htm [4] Gerald, W.H., 2001. The Status of World Geothermal Power Generation 1995-2000. Geothermics, 30(1): 1-27. doi: 10.1016/S0375-6505(00)00042-0 [5] Guo, Q.H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887-1898. doi: 10.1016/j.apgeochem.2012.07.006 [6] Hu, S.B., He, L.J., Wang, J.Y., 2000. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 179(2): 407-419. doi: 10.1016/S0012-82/x(00)00126-6 [7] Ingvar, B.F., 2001. Geothermal Energy for the Benefit of the People. Renewable & Sustainable Energy Reviews, 5(3): 299-312. doi: 10.1016/S1364-0321(01)00002-8 [8] Lü, T., Gao, X.W., Li, N., 2009. The Geothermal Power Technology and Technical Problems. Journal of Shenyang Institute of Engineering (Natural Science Edition), 1(5): 5-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDL200901001.htm [9] Ma, M.L., Wang, J.C., 1998. Current Status and Prospects of Geothermal Power Generation at Home and Abroad. Journal of Electrotechnics, 11: 1-4 (in Chinese). [10] Oguz, A., 2011. Power Generation from Medium Temperature Geothermal Resources. Energy, 36(5): 2528-2534. doi:1016/j.energy.2011.01.045 [11] Ronald, D., 2003. Second Law Assessment of Binary Plants Generating Power from Low-Temperature Geothermal Fluids. Geothermics, 33(5): 565-586. doi: 1016/j.geothermics.2003.10.003 [12] Wan, Z.J., Zhao, Y.S., Kang, J.R., 2005. Forecast and Evaluation of Hot Dry Rock Geothermal Resource in China. Renewable Energy, 30(12): 1831-1846. doi: 10.1016/j.renene.2005.01.016 [13] Wang, B., He, S.H., Li, B.X., et al., 2010. Geothermal Resource Distribution Characteristics of Gonghe Basin in Qinghai-Effect of CSAMT in Geothermal Prospecting. Mineral Resources and Geology, 24(3): 280-285 (in Chinese with English abstract). [14] Wang, G.L., Zhang, F.W., Liu, Z.M., 2000. An Analysis of Present Situation and Prospects of Geothermal Energy Development and Utilization in the World. Acta Geoscientia Sinica, 21(2): 134-139 (in Chinese with English abstract). [15] Wang, J.Y., Liu, S.B., Zhu, H.Z., 2000. Development Strategy of China's Geothermal Energy in 21st Century. Electric Power, 33(9): 85-94 (in Chinese with English abstract). [16] Xue, J.Q., Gan, B., Li, B.X., et al., 2013. Geological-Geophysical Characteristics of Enhanced Geothermal Systems (Hot Dry Rocks) in Gonghe-Guide Basin. Geophysical & Geochemical Exploration, 37(1): 35-41 (in Chinese with English abstract). [17] Yan, W.D., Wang, Y.X., Gao, X.Z., et al., 2013. Distribution and Aggregation Mechanism of Geothermal Energy in Gonghe Basin. Northwestern Geology, 46(4): 223-230 (in Chinese with English abstract). [18] Zeng, Y.C., Wu, N.Y., Zheng, S., et al., 2014. Numerical Simulation of Electricity Generation Potential from Fractured Granite Reservoir through A Single Horizontal Well at Yangbajing Geothermal Field. Energy, 65: 472-487. doi: 10.1016/j.energy.2013.10.084 [19] Zhang, Z., 1999. Abundant Geothermal Resources in Qinghai Province. Earth, 6: 11 (in Chinese). [20] Zhao, P., Jin, J., Zhang, H.Z., et al., 1998. Chemical Composition of Thermal Water in the Yangbajain Geothermal Field, Tibet. Chinese Scientia Geological Sciences, 33(1): 61-72 (in Chinese with English abstract). [21] Zhao, Z., Luo, Y.F., Meng, M., et al., 2013. Researches on Arrangements for Reconnaissance and Development of General Situation of Geothermal Resources in Qinghai Province. Journal of Qinghai Environment, 23(3): 130-135 (in Chinese). [22] Zheng, K.Y., Pan, X.P., 2009. Status and Prospect of Geothermal Generation Development in China. Sino-Global Energy, 14(2): 45-48 (in Chinese with English abstract). http://www.researchgate.net/publication/285698602_Status_and_prospect_of_geothermal_generation_development_in_China [23] 高学伟, 李楠, 康慧, 2008. 地热发电技术的发展现状. 电力勘测设计, 6(3): 59-62, 80. doi: 10.3969/j.issn.1671-9913.2008.03.016 [24] 吕太, 高学伟, 李楠, 2009. 地热发电技术及存在的技术难题. 沈阳工程学院学报(自然科学版), 5(1): 5-8. doi: 10.3969/j.issn.1673-1603.2009.01.002 [25] 马梅林, 王纪春, 1998. 国内外地热发电现状与展望. 电工技术, 11: 1-4. [26] 王斌, 何世豪, 李百祥, 等, 2010. 青海共和盆地地热资源分布特征兼述CSAMT在地热勘查中的作用. 矿产与地质, 24(3): 280-285. doi: 10.3969/j.issn.1001-5663.2010.03.017 [27] 王贵玲, 张发旺, 刘志明, 2000. 国内外地热能开发利用现状及前景分析. 地球学报, 21(2): 134-139. doi: 10.3321/j.issn:1006-3021.2000.02.004 [28] 汪集旸, 刘时彬, 朱化周, 2000.21世纪中国地热能发展战略. 中国电力, 9(33): 85-94. [29] 薛建球, 甘斌, 李百祥, 等, 2013. 青海共和-贵德盆地增强型地热系统(干热岩)地质-地球物理特征. 物探与化探, 37(1): 35-41. [30] 严维德, 王焰新, 高学忠, 等, 2013. 共和盆地地热能分布特征与聚集机制分析. 西北地质, 46(4): 223-230. doi: 10.3969/j.issn.1009-6248.2013.04.022 [31] 张珍, 1999. 青海丰富的地热资源. 地球, 6: 11. [32] 赵平, 金建, 张海政, 等, 1998. 西藏羊八井地热田热水的化学组成. 地质科学, 33(1): 61-72. [33] 赵振, 罗银飞, 孟梦, 等, 2013. 青海省地热资源概况及勘察开发利用部署初步研究. 青海环境, 23(3): 130-135. doi: 10.3969/j.issn.1007-2454.2013.03.006 [34] 郑克棪, 潘小平, 2009. 中国地热发电开发现状与前景. 中外能源, 14(2): 45-48.