• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青海共和盆地中低温地热流体发电

    王敏黛 郭清海 严维德 刘明亮 曹耀武 李洁祥 石维栋 尚小刚 马月花

    王敏黛, 郭清海, 严维德, 刘明亮, 曹耀武, 李洁祥, 石维栋, 尚小刚, 马月花, 2014. 青海共和盆地中低温地热流体发电. 地球科学, 39(9): 1317-1322. doi: 10.3799/dqkx.2014.113
    引用本文: 王敏黛, 郭清海, 严维德, 刘明亮, 曹耀武, 李洁祥, 石维栋, 尚小刚, 马月花, 2014. 青海共和盆地中低温地热流体发电. 地球科学, 39(9): 1317-1322. doi: 10.3799/dqkx.2014.113
    Wang Mindai, Guo Qinghai, Yan Weide, Liu Mingliang, Cao Yaowu, Li Jiexiang, Shi Weidong, Shang Xiaogang, Ma Yuehua, 2014. Medium-Low-Enthalpy Geothermal Power-Electricity Generation at Gonghe Basin, Qinghai Province. Earth Science, 39(9): 1317-1322. doi: 10.3799/dqkx.2014.113
    Citation: Wang Mindai, Guo Qinghai, Yan Weide, Liu Mingliang, Cao Yaowu, Li Jiexiang, Shi Weidong, Shang Xiaogang, Ma Yuehua, 2014. Medium-Low-Enthalpy Geothermal Power-Electricity Generation at Gonghe Basin, Qinghai Province. Earth Science, 39(9): 1317-1322. doi: 10.3799/dqkx.2014.113

    青海共和盆地中低温地热流体发电

    doi: 10.3799/dqkx.2014.113
    基金项目: 

    青海省科技计划项目 2013-G-Q08A

    详细信息
      作者简介:

      王敏黛(1990-), 女, 硕士研究生在读, 从事高温地热领域的研究工作.E-mail: mindaiwang@163.com

      通讯作者:

      郭清海, E-mail: qhguo2006@gmail.com

    • 中图分类号: P314

    Medium-Low-Enthalpy Geothermal Power-Electricity Generation at Gonghe Basin, Qinghai Province

    • 摘要: 青海省是我国地热资源相对丰富的地区, 但其主要地热能开发利用方式长期以来为效率较低的直接利用.以青海东北部地热异常明显的共和盆地为典型研究区, 依据前期地热地质调查和地球物理工作成果, 在盆地北部施工了终孔深度为1 852 m的DR2井, 获取了温度达84.2 ℃的地热流体.在此基础上, 建立了青海省首个试验地热发电站, 设计年平均净发电量为114 kW.与利用高温地热流体发电的西藏羊八井地热电站不同, 青海共和试验地热电站是青藏高原利用中低温地热流体发电的典范, 有望为青海省能源结构优化做出开拓性贡献.总体来看, 共和盆地地热流体温度较高、水量丰富、具有较大的发电潜力, 但在开发利用过程中也应注意结垢问题.

       

    • 图  1  共和地质简图及DR2井位(据薛建球等, 2013)

      Fig.  1.  Simplified geological map of Gonghe Basin and location of Well DR2

      图  2  DR2井地温(a)和地温梯度(b)随深度变化曲线

      Fig.  2.  Plots of well temperature (a) and geothermal gradient (b) versus depth for Well DR2

      图  3  螺杆膨胀机发电流程

      Fig.  3.  A flow chart showing the process of electricity generation by screw expander

      表  1  DR2生产井地热水的化学组成

      Table  1.   Chemical composition of geothermal water sample from Well DR2

      分析项目(μg/L) 分析项目(μg/L) 分析项目(μg/L) 分析项目(μg/L)
      Al3+ nd. F- 3.56 Ag 0.453 Li 9 060
      As 0.621 HCO3- 604 Au 0.154 Rb 122
      B 26.4 CO32- 2.42 Ba 0.066 Cs 686
      Ca2+ 45.7 Cl- 678 Be nd. Sb 12.81
      K+ 12.1 NO3- nd. Cd 0.003
      Mg2+ 1.82 SO42- 135.6 Co nd.
      Na+ 576.5 Cr nd.
      Sr 1.46 Cu nd.
      Zn2+ 0.04 Ni 0.011 Fe(总) nd.
      NH4+ 0.59 Pb 0.044 Hg nd.
      Fe2+ 0.02 Se 0.012 Sn 0.12
      SiO2 58.2 Mn nd. V 0.11
      CO2 15.4
      H2S nd.
      注: pH为7.69;温度为84.2 ℃.
      下载: 导出CSV

      表  2  20~90 ℃范围内DR2井地热水对方解石的饱和指数

      Table  2.   Saturation indices of the geothermal water extracted from DR2 with respect to calcite over a temperature range of 20-90 ℃

      温度(℃) 20 30 40 50 60 70 80 90
      饱和指数 0.736 0.787 0.851 0.929 1.008 1.093 1.183 1.276
      下载: 导出CSV
    • [1] Baik, Y.J., Kim, M., Chang, K.C., et al., 2013. A Comparative Study of Power Optimization in Low-Temperature Geothermal Heat Source Driven R125 Transcritical Cycle and HFC Organic Rankine Cycles. Renewable Energy, 54: 78-84. doi: 10.1016/jrenene.2012.08.055
      [2] Enrico, B., 2002. Geothermal Energy Technology and Current Status: An Overview. Renewable & Sustainable Energy Reviews, 6(1-2): 3-65. doi: 10.1016/S1346-0321(02)00002-3
      [3] Gao, X.W., Li, N., Kang, H., 2008. The Development Status of Geothermal Power Technology. Electric Power Survey & Design, 6(3): 59-62, 80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKC200803019.htm
      [4] Gerald, W.H., 2001. The Status of World Geothermal Power Generation 1995-2000. Geothermics, 30(1): 1-27. doi: 10.1016/S0375-6505(00)00042-0
      [5] Guo, Q.H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887-1898. doi: 10.1016/j.apgeochem.2012.07.006
      [6] Hu, S.B., He, L.J., Wang, J.Y., 2000. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 179(2): 407-419. doi: 10.1016/S0012-82/x(00)00126-6
      [7] Ingvar, B.F., 2001. Geothermal Energy for the Benefit of the People. Renewable & Sustainable Energy Reviews, 5(3): 299-312. doi: 10.1016/S1364-0321(01)00002-8
      [8] Lü, T., Gao, X.W., Li, N., 2009. The Geothermal Power Technology and Technical Problems. Journal of Shenyang Institute of Engineering (Natural Science Edition), 1(5): 5-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDL200901001.htm
      [9] Ma, M.L., Wang, J.C., 1998. Current Status and Prospects of Geothermal Power Generation at Home and Abroad. Journal of Electrotechnics, 11: 1-4 (in Chinese).
      [10] Oguz, A., 2011. Power Generation from Medium Temperature Geothermal Resources. Energy, 36(5): 2528-2534. doi:1016/j.energy.2011.01.045
      [11] Ronald, D., 2003. Second Law Assessment of Binary Plants Generating Power from Low-Temperature Geothermal Fluids. Geothermics, 33(5): 565-586. doi: 1016/j.geothermics.2003.10.003
      [12] Wan, Z.J., Zhao, Y.S., Kang, J.R., 2005. Forecast and Evaluation of Hot Dry Rock Geothermal Resource in China. Renewable Energy, 30(12): 1831-1846. doi: 10.1016/j.renene.2005.01.016
      [13] Wang, B., He, S.H., Li, B.X., et al., 2010. Geothermal Resource Distribution Characteristics of Gonghe Basin in Qinghai-Effect of CSAMT in Geothermal Prospecting. Mineral Resources and Geology, 24(3): 280-285 (in Chinese with English abstract).
      [14] Wang, G.L., Zhang, F.W., Liu, Z.M., 2000. An Analysis of Present Situation and Prospects of Geothermal Energy Development and Utilization in the World. Acta Geoscientia Sinica, 21(2): 134-139 (in Chinese with English abstract).
      [15] Wang, J.Y., Liu, S.B., Zhu, H.Z., 2000. Development Strategy of China's Geothermal Energy in 21st Century. Electric Power, 33(9): 85-94 (in Chinese with English abstract).
      [16] Xue, J.Q., Gan, B., Li, B.X., et al., 2013. Geological-Geophysical Characteristics of Enhanced Geothermal Systems (Hot Dry Rocks) in Gonghe-Guide Basin. Geophysical & Geochemical Exploration, 37(1): 35-41 (in Chinese with English abstract).
      [17] Yan, W.D., Wang, Y.X., Gao, X.Z., et al., 2013. Distribution and Aggregation Mechanism of Geothermal Energy in Gonghe Basin. Northwestern Geology, 46(4): 223-230 (in Chinese with English abstract).
      [18] Zeng, Y.C., Wu, N.Y., Zheng, S., et al., 2014. Numerical Simulation of Electricity Generation Potential from Fractured Granite Reservoir through A Single Horizontal Well at Yangbajing Geothermal Field. Energy, 65: 472-487. doi: 10.1016/j.energy.2013.10.084
      [19] Zhang, Z., 1999. Abundant Geothermal Resources in Qinghai Province. Earth, 6: 11 (in Chinese).
      [20] Zhao, P., Jin, J., Zhang, H.Z., et al., 1998. Chemical Composition of Thermal Water in the Yangbajain Geothermal Field, Tibet. Chinese Scientia Geological Sciences, 33(1): 61-72 (in Chinese with English abstract).
      [21] Zhao, Z., Luo, Y.F., Meng, M., et al., 2013. Researches on Arrangements for Reconnaissance and Development of General Situation of Geothermal Resources in Qinghai Province. Journal of Qinghai Environment, 23(3): 130-135 (in Chinese).
      [22] Zheng, K.Y., Pan, X.P., 2009. Status and Prospect of Geothermal Generation Development in China. Sino-Global Energy, 14(2): 45-48 (in Chinese with English abstract). http://www.researchgate.net/publication/285698602_Status_and_prospect_of_geothermal_generation_development_in_China
      [23] 高学伟, 李楠, 康慧, 2008. 地热发电技术的发展现状. 电力勘测设计, 6(3): 59-62, 80. doi: 10.3969/j.issn.1671-9913.2008.03.016
      [24] 吕太, 高学伟, 李楠, 2009. 地热发电技术及存在的技术难题. 沈阳工程学院学报(自然科学版), 5(1): 5-8. doi: 10.3969/j.issn.1673-1603.2009.01.002
      [25] 马梅林, 王纪春, 1998. 国内外地热发电现状与展望. 电工技术, 11: 1-4.
      [26] 王斌, 何世豪, 李百祥, 等, 2010. 青海共和盆地地热资源分布特征兼述CSAMT在地热勘查中的作用. 矿产与地质, 24(3): 280-285. doi: 10.3969/j.issn.1001-5663.2010.03.017
      [27] 王贵玲, 张发旺, 刘志明, 2000. 国内外地热能开发利用现状及前景分析. 地球学报, 21(2): 134-139. doi: 10.3321/j.issn:1006-3021.2000.02.004
      [28] 汪集旸, 刘时彬, 朱化周, 2000.21世纪中国地热能发展战略. 中国电力, 9(33): 85-94.
      [29] 薛建球, 甘斌, 李百祥, 等, 2013. 青海共和-贵德盆地增强型地热系统(干热岩)地质-地球物理特征. 物探与化探, 37(1): 35-41.
      [30] 严维德, 王焰新, 高学忠, 等, 2013. 共和盆地地热能分布特征与聚集机制分析. 西北地质, 46(4): 223-230. doi: 10.3969/j.issn.1009-6248.2013.04.022
      [31] 张珍, 1999. 青海丰富的地热资源. 地球, 6: 11.
      [32] 赵平, 金建, 张海政, 等, 1998. 西藏羊八井地热田热水的化学组成. 地质科学, 33(1): 61-72.
      [33] 赵振, 罗银飞, 孟梦, 等, 2013. 青海省地热资源概况及勘察开发利用部署初步研究. 青海环境, 23(3): 130-135. doi: 10.3969/j.issn.1007-2454.2013.03.006
      [34] 郑克棪, 潘小平, 2009. 中国地热发电开发现状与前景. 中外能源, 14(2): 45-48.
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  3020
    • HTML全文浏览量:  224
    • PDF下载量:  654
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-04-12
    • 刊出日期:  2014-09-01

    目录

      /

      返回文章
      返回