Post-Collision Related Late Indosinian Granites of Gangdise Terrane: Evidences from Zircon U-Pb Geochronology and Petrogeochemistry
-
摘要: 对出露在冈底斯中带的达布拉岩体进行了系统的岩石学研究、LA-ICP-MS锆石U-Pb定年、岩石地球化学分析、Sr-Nd-Pb同位素组成的讨论.结果显示, 达布拉岩体的岩石类型为二长花岗岩, 由中细粒的边缘相和中粗粒的中央相组成, 成岩年龄为230.6±4.3 Ma~228.2±3.5 Ma, 属晚三叠世.岩体具高Si(w(SiO2)=71.79%~77.27%)、高K(w(K2O)=4.06%~5.26%)、低Ti(w(TiO2)=0.06%~0.40%)含量特征, 铝饱和指数(A/CNK)为1.16~1.19, 为强过铝质花岗岩, 负铕异常显著(Eu/Eu*=0.06~0.35), 强烈富集Rb、Th和亏损Ba、Nb、Sr、P、Ti.同位素组成上具高(87Sr/86Sr)i值(0.712 7~0.720 1)、低εNd(t)值(-10.6)、高放射成因Pb特征.达布拉岩体为澳大利亚大陆北缘与拉萨地块汇聚碰撞触发的班公湖-怒江洋壳岩石圈南向俯冲背景下, 在后碰撞伸展阶段由幔源岩浆底侵引发冈底斯成熟地壳物质部分熔融形成的.Abstract: The lithology, LA-ICP-MS zircon U-Pb age, major and trace element geochemistry, Sr-Nd-Pb isotope compositions of Dabula pluton from the middle part of the Gangdise granitoid belt are systematically studied in the paper. Results suggest that the rock type is adamellite, and the pluton is composed of middle-fine grained border facies and middle-coarse grained central facies. The two facies yield weighted mean ages of 230.6±4.3 Ma-228.2±3.5 Ma, with the corresponding age of Late Triassic. The rocks are relatively rich in SiO2 and kalium, with SiO2 content between 71.79%-77.27%; relatively high K(w(K2O)=4.06%-5.26%) and low Ti(w(TiO2)=0.06%-0.40%) contents; A/CNK varies from 1.16-1.19, displaying strong peraluminous characteristics and sharp negative Eu anomalies (δEu=0.06-0.35). Trace element ratio spider diagram displays apparent enrichments of Rb, Th elements, and marked depletions of Ba, Nb, Sr, P and Ti The Sr-Nd isotopes show the granite bodies have the high initial 87Sr/86Sr ratios (0.712 7-0.720 1) and the negative εNd(t) (-10.6) results. Pb isotope feature shows the enrichment of radiogenic Pb. It is concluded that the Dabula pluton was formed by partial melting of mature crustal materials from Gangdise resulted from the underplating of the subduction-related basaltic magmas during the post-collisional extention in the dynamic background associated with the southward Bangong-Nujiang Tethyan seafloor subduction triggered by the collision between the northern Australia and Lhasa terranes.
-
Key words:
- late Indosinian granite /
- zircon U-Pb age /
- geochemistry /
- post-collision /
- Gangdise
-
图 5 达布拉岩体的SiO2-(Na2O+K2O)分类(a)和SiO2-K2O关系(b)
a图据Cox et al., 1979;b图据Peccerillo and Taylor, 1976;1.橄榄辉长岩;2.辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.二长辉长岩;8.二长闪长岩;9.二长岩;10.石英二长岩;11.正长岩;12.似长辉长岩;13.似长二长闪长岩;14.似长正长闪长岩;15.似长正长岩;16.似长岩;Ir-Irvine分界线、岩石系列划分据Irvine and Baragar(1971);A.碱性系列;S.亚碱性系列
Fig. 5. SiO2-(Na2O+K2O) classification (a) and relation of SiO2-K2O (b) of Dabula pluton
图 6 达布拉岩体稀土元素和微量元素蛛网图
球粒陨石标准化值a图据Sun and McDonough(1989);原始地幔标准化值b图据Sun and McDonough(1989)
Fig. 6. REE and trace element spidergram of Dabula pluton
图 7 达布拉岩体的Sr-Nd同位素关系
a.据莫宣学等(2005);b.据DePaolo and Wasserburg(1979)
Fig. 7. Isotopic relation of Sr-Nd of Dabula pluton
图 8 达布拉岩体的Pb同位素协变
图a中拉萨东部基底片麻岩,中部火山岩,西部超钾质岩石数据赵志丹等(2007);图b中3个Pb同位素地球化学端元的划分赵志丹等(2007)
Fig. 8. 206Pb/204Pb-207Pb/204Pb (a) and 206Pb/204Pb-208Pb/204Pb (b) covariant plot of Dabula pluton
图 9 达布拉岩体的Yb-Ta和Yb+Ta-Rb构造环境判别(据Pearce et al., 1984)
syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;VAG.岛弧花岗岩
Fig. 9. Yb-Ta and Yb+Ta-Rb tectonic setting discrimination of Dabula pluton
图 10 达布拉岩体的R1-R2构造环境判别(据Batchelor and Bowden, 1985)
Fig. 10. R1-R2 tectonic setting discrimination of Dabula pluton
图 11 达布拉岩体的Rb/Sr-Rb/Ba关系(据Sylvester, 1998)
Fig. 11. Relation of Rb/Sr-Rb/Ba of Dabula pluton
表 1 达布拉岩体LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS U-Pb data of zircon of Dabula pluton
分析点号 Pb(μg/g) Th(μg/g) U(μg/g) Th/U 207Pb*/206Pb* 1σ 207Pb*/235U 1σ 206Pb*/238U 1σ 207Pb/206Pb 207Pb/235U 206Pb/238U 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 样品B1282-2(中细粒二长花岗岩) B1282-2-01 34.95 412.95 798.49 0.52 0.051 22 0.001 32 0.260 77 0.006 46 0.036 89 0.000 31 251 41 235 5 234 2 B1282-2-02 93.99 620.34 2 413.16 0.26 0.050 97 0.000 99 0.249 51 0.004 93 0.035 43 0.000 32 239 29 226 4 224 2 B1282-2-03 89.37 711.69 2 228.76 0.32 0.050 07 0.000 98 0.254 26 0.005 65 0.036 75 0.000 46 198 29 230 5 233 3 B1282-2-04 143.54 1 112.59 3 494.02 0.32 0.051 98 0.000 89 0.266 12 0.004 46 0.037 06 0.000 24 284 26 240 4 235 2 B1282-2-05 83.35 370.63 2 184.34 0.17 0.050 58 0.000 86 0.251 85 0.004 31 0.036 09 0.000 38 222 21 228 3 229 2 样品B2186-1(中粗粒似斑状二长花岗岩) B2186-1-01 481.26 2 109.27 7 966.48 0.26 0.051 93 0.002 04 0.269 96 0.011 17 0.037 41 0.000 53 283 89 243 9 237 3 B2186-1-02 236.43 1 051.40 3 939.86 0.27 0.051 93 0.001 53 0.265 10 0.008 02 0.036 96 0.000 52 283 69 239 6 234 3 B2186-1-03 172.48 1 260.05 2 170.51 0.58 0.053 38 0.001 60 0.265 30 0.007 98 0.036 09 0.000 47 346 69 239 6 229 3 B2186-1-04 590.06 3 301.29 10 916.94 0.30 0.058 64 0.000 90 0.293 94 0.004 77 0.036 33 0.000 38 554 33 262 4 230 2 B2186-1-05 172.52 1 107.07 1 923.99 0.58 0.054 61 0.002 37 0.264 79 0.013 54 0.034 64 0.000 55 394 103 239 11 220 3 B2186-1-06 316.93 2 910.98 2 925.26 1.00 0.059 50 0.002 21 0.293 75 0.011 09 0.035 44 0.000 36 587 81 262 9 225 2 B2186-1-07 478.72 2 400.03 9 842.31 0.24 0.054 51 0.001 59 0.275 05 0.008 31 0.036 28 0.000 52 391 67 247 7 230 3 B2186-1-08 185.99 954.72 2 564.58 0.37 0.049 15 0.002 09 0.244 78 0.009 62 0.036 20 0.000 57 154 98 222 8 229 4 B2186-1-09 161.54 937.70 2 041.27 0.46 0.049 94 0.002 13 0.246 35 0.01022 0.035 51 0.000 45 191 94 224 8 225 3 B2186-1-10 159.22 962.46 1 822.36 0.53 0.049 76 0.001 89 0.248 29 0.009 04 0.036 17 0.000 46 183 117 225 7 229 3 B2186-1-11 247.26 1 053.51 3 015.08 0.35 0.053 89 0.001 92 0.266 12 0.00927 0.035 53 0.000 43 365 86 240 7 225 3 B2186-1-12 333.23 2 580.36 4 027.10 0.64 0.065 50 0.001 87 0.327 10 0.009 99 0.035 80 0.000 35 791 60 287 8 227 2 B2186-1-13 452.05 1 920.20 4 614.38 0.42 0.054 45 0.001 38 0.280 00 0.007 43 0.037 09 0.000 47 391 62 251 6 235 3 注: Pb*代表放射性铅. 表 2 达布拉岩体主量元素分析结果(%)
Table 2. Major elements result of Dabula pluton
样号 岩石名称 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O+ CO2 总量 B2186-1 中粗粒似斑状二长花岗岩 72.02 0.29 13.83 0.27 2.00 0.05 0.64 0.90 2.85 5.13 0.08 1.08 0.63 99.77 B2190-1 中粗粒似斑状二长花岗岩 71.89 0.40 12.99 0.98 3.01 0.10 0.86 1.18 2.85 4.06 0.11 1.05 0.21 99.69 B2190-2 中粗粒似斑状二长花岗岩 71.79 0.36 13.62 0.41 2.57 0.06 0.76 1.11 2.89 4.79 0.10 0.83 0.35 99.64 B1080-1 中细粒二长花岗岩 77.27 0.06 12.91 0.29 0.10 0.01 0.15 0.13 3.09 5.22 0.02 0.57 0.06 99.88 B1282-2 中细粒二长花岗岩 75.73 0.07 13.74 0.27 0.25 0.05 0.16 0.25 3.26 5.26 0.06 0.68 0.08 99.86 注: 分析测试单位为西南冶金地质测试所,下同. 表 3 达布拉岩体稀土元素分析结果(10-6)
Table 3. Rare earth elements result of Dabula pluton
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE (La/Yb)N δEu B2186-1 53.34 67.48 11.62 45.41 8.97 1.08 9.65 1.27 7.60 1.47 4.48 0.64 2.07 0.61 30.53 215.68 18.49 0.35 B2190-1 66.92 75.64 15.17 60.19 12.17 0.95 12.74 1.66 10.18 1.87 5.87 0.81 3.31 0.71 40.16 268.19 14.52 0.23 B2190-2 53.72 73.85 11.47 43.26 8.84 1.01 9.67 1.17 7.30 1.25 3.90 0.52 3.53 0.52 32.86 220.00 10.92 0.33 B1080-1 12.62 29.22 3.66 13.13 4.22 0.09 4.35 0.91 6.42 1.32 4.22 0.76 5.51 0.80 43.46 87.25 1.64 0.06 B1282-2 15.44 32.87 3.73 13.14 3.68 0.26 4.08 0.86 6.42 1.33 4.13 0.70 4.86 0.69 43.97 92.18 2.28 0.21 表 4 达布拉岩体微量元素分析结果(10-6)
Table 4. Trace elements result of Dabula pluton
样号 Rb Sr Ba U Th Nb Ta Zr Hf Sc V Cr Co Ni Cu Zn Pb B2186-1 396.00 107.70 297.50 3.86 41.99 12.44 4.05 130.89 8.18 6.07 23.91 180.60 4.62 5.93 54.16 149.10 189.30 B2190-1 315.30 100.80 264.20 14.50 76.19 12.23 4.33 212.56 13.16 9.10 34.13 310.80 6.96 6.88 75.00 277.10 1 405.00 B2190-2 356.00 109.80 285.10 9.62 57.65 10.96 3.35 176.48 10.78 7.55 30.07 211.70 5.04 7.55 42.23 74.12 220.30 B1080-1 733.40 13.64 69.20 5.97 10.80 0.73 1.75 33.95 2.21 2.20 1.35 12.90 0.65 1.11 1.38 5.37 83.02 B1282-2 539.40 34.97 105.60 5.24 17.95 5.32 2.89 43.75 2.17 1.97 2.93 15.56 0.48 1.10 1.62 148.40 89.98 表 5 达布拉岩体全岩Sr-Nd同位素组成
Table 5. Sr-Nd isotopic data of Dabula pluton
样号 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i εSr(t) B2186-1 396.0 107.7 10.687 134 0.754 802±7 0.720 1 225.5 B2190-1 315.3 100.8 9.082 641 0.744 567±9 0.715 1 154.2 B2190-2 356.0 109.8 9.413 236 0.743 210±5 0.712 7 119.6 样号 Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(t) B2186-1 8.97 45.41 0.119 426 0.511 977±10 0.511 8 -10.6 B2190-1 12.17 60.19 0.122 193 0.511 982±7 0.511 8 -10.6 B2190-2 8.84 43.26 0.123 587 0.511 984±7 0.511 8 -10.6 注: 分析测试单位为中国地质大学(武汉)地质过程与矿产资源国家重点实验室,下同;t=228.2 Ma. 表 6 达布拉岩体全岩Pb同位素组成
Table 6. Pb isotopic data of Dabula pluton
样号 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb B2186-1 18.801 4±0.000 4 15.753 6±0.000 4 39.413 5±0.001 0 B2190-1 19.216 3±0.000 3 15.781 9±0.000 3 39.896 4±0.000 7 B2190-2 19.035 6±0.000 4 15.772 5±0.000 3 39.737 6±0.001 0 -
[1] Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Batchelor, R.A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. doi: 10.1016/0009-2541(85)90034-8 [3] Chen, W., Ma, C.Q., Song, Z.Q., et al., 2011. Subduction-Related Early Jurassic Granodiorite in Xiaodasongdu, the South of Middle Gangdise in Tibet: Evidences from Zircon U-Pb Geochronology and Geochemistry. Geological Science and Technology Information, 30(6): 1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201106001.htm [4] Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. Unwin Hyman, London. [5] Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2006. Magma Mixing in Middle Part of Gangdise Magma Belt: Evidences from Granitoid Complex. Acta Petrologica Sinica, 22(4): 835-844 (in Chinese with English abstract). [6] DePaolo, D.J., Wasserburg, G.J., 1979. Petrogenetic Mixing Models and Nd-Sr Isotopic Patterns. Geochimica et Cosmochimica Acta, 43(4): 615-627. doi: 10.1016/0016-7037(79)90169-8 [7] Geng, Q.R., Pan, G.T., Jin, Z.M., et al., 2005. Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet. Earth Science—Journal of China University of Geosciences, 30(6): 747-760 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_dqkx-e200504001.aspx [8] He, Z.H., Yang, D.M., Zheng, C.Q., et al., 2006. Isotopic Dating of the Mamba Granitoid in the Gangdise Tectonic Belt and Its Constraint on the Subduction Time of the Neotethys. Geological Review, 52(1): 100-106 (in Chinese with English abstract). http://www.researchgate.net/publication/309901435_Isotopic_dating_of_the_mamba_granitoid_in_the_Gangdise_Tectonic_Belt_and_its_constraint_on_the_subduction_time_of_the_Neotethys [9] Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2006. Early Processes and Tectonic Model for the Indian-Asian Continental Collision: Evidence from the Cenozoic Gangdese Igneous Rocks in Tibet. Acta Geologica Sinica, 80(9): 1233-1248 (in Chinese with English abstract). http://www.researchgate.net/publication/284178659_Early_Processes_and_Tectonic_Model_for_the_Indian-Asian_Continental_Collision_Evidence_from_the_Cenozoic_Gangdese_Igneous_Rocks_in_Tibet [10] Irvine, T.N., Baragar, W.R.A., 1971. A Guide to the Chemical Classification of the Highgrade Common Volcanic Rocks. Can. J. Earth Sci., 8(5): 523-548. doi: 10.1139/e71-055 [11] Li, C., Wang, T.W., Li, H.M., et al., 2003. Discovery of Indosinian Megaporphyritic Granodiorite in the Gangdise Area: Evidence for the Existence of Paleo-Gangdise. Geological Bulletin of China, 22(5): 364-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200305010.htm [12] Li, G.M., Rui, Z.Y., 2004. Diagenetic and Mineralization Ages for the Porphyry Copper Deposis in the Gangdise Metallogenic Belt, Southern Xizang. Geotectonica et Metallogenia, 28(2): 165-170 (in Chinese with English abstract). http://www.researchgate.net/publication/288267777_Diagenetic_and_mineralization_ages_for_the_porphyry_copper_in_the_Gangdese_metallogenic_belt_southern_Tibet [13] Li, H.Q., 2009. The Geological Significance of Indosinian Orogenesis Occurred in Lhasa Terrane (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [14] Liao, Z.L., Mo, X.X., Pan, G.T., et al., 2006. On Peraluminous Granites in Tibet, China. Geological Bulletin of China, 25(7): 812-821 (in Chinese with English abstract). http://www.researchgate.net/publication/289907208_On_peraluminous_granites_in_Tibet_China [15] Liegeois, N.P., Naves, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids: The Use of Sliding Normalization. Lithos, 45: 1-28. doi: 10.1016/S0024-4937(98)00023-1 [16] Liu, Q.S., Jiang, W., Jian, P., et al., 2006. Zircon SHRIMP U-Pb Age and Petrochemical and Geochemical Features of Mesozoic Muscovite Monzonitic Granite at Ningzhong, Tibet. Acta Petrologica Sinica, 22(3): 643-652 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603013.htm [17] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [18] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [19] Liu, Y.S., Hu, Z.C., Zong, K., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [20] Ludwig, K.R., 2012. User Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronogy Center, Special Publication No. 5. [21] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdise, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3): 281-290 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026542272 [22] Niu, Y.L., O'Hara, M.J., Pearce, J.A., 2003. Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere: A Petrologic Perspective. Journal of Petrology, 44(5): 851-866. doi: 10.1093/petrology/44.5.851 [23] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial Temporal Framework of the Gangdise Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080 [24] Patino-Douce, A.E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. doi: 10.1093/petroj/39.4.689 [25] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 [26] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calcalkaline Volcanic Rocks from the Kastamou Area, Northern Turkey. Contrib. Miner. Petrol., 58(1): 63-81. doi: 10.1007/BF00384745 [27] Qu, X.M., Hou, Z.Q., Xin, H.B., 2006. Zircon SHRIMP Ages and Geochemical Characteristics of Two Generations of Adakite from Gangdese Collisional Orogenic Belt, Tibet. Mineral Deposits, 25(Suppl.): 418-422 (in Chinese). [28] Rui, Z.Y., Hou, Z.Q., Qu, X.M., et al., 2003. Metallogenetic Epoch of Gangdese Porphyry Copper Belt and Uplift of Qinghai-Tibet Plateau. Mineral Deposits, 22(3): 217-225 (in Chinese with English abstract). http://www.researchgate.net/publication/312970176_Metallogenetic_epoch_of_Gangdese_porphyry_copper_belt_and_uplift_of_Qinghai-Tibet_Plateau [29] Sun, S.S., McDonough, W, F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345. doi: 10.1144/GSL.sp.1989.042.01.19 [30] Sylvester, P., 1998. Post-Collisional Strongly London, Peraluminous Granites. Lithos, 45(1-2): 29-44. doi: 10.1016/S0024-4937(98)00024-3 [31] Wang, L.Q., Pan, G.T., Zhu, D.C., et al., 2008. Carboniferous-Permian Island Arc Orogenesis in the Gangdise Belt, Tibet, China: Evidence from Volcanic Rocks and Geochemistry. Geological Bulletin of China, 27(9): 1509-1534 (in Chinese with English abstract). http://www.researchgate.net/publication/284098398_Carboniferous-Permian_island_arc_orogenysis_in_the_Gangdise_belt_Tibet_evidence_form_volcanic_rocks_and_geochemistry [32] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X [33] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1602 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [34] Zhang, H.F., Harris N., Parrish R., et al., 2004. Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 228(1-2): 195-212. doi: 10.1016/j.epsl.2004.09.031 [35] Zhang, H.F., Xu, W.C., Guo, J.Q. et al., 2007. Indosinian Orogenesis of the Gangdise Terrane: Evidence from Zircon U-Pb Dating and Petrogenesis of Granitoids. Earth Science—Journal of China University of Geosciences, 32(2): 155-166 (in Chinese with English abstract). [36] Zhang, Q., Pan, G.Q., Li, C.D., et al., 2007. Are Discrimination Diagrams always Indicative of Correct Tectonic Settings of Granites? Some Crucial Questions on Granite Study (3). Acta Petrologica Sinica, 23(11): 2683-2698 (in Chinese with English abstract). http://www.researchgate.net/publication/281036698_Are_discrimination_diagrams_always_indicative_of_correct_tectonic_settings_of_granites_Some_crucial_questions_on_granite_study_3 [37] Zhao, Z.D., Mo, X.X., Dong, G.C., et al., 2007. Pb Isotopic Geochemistry of Tibetan Platesu and Its Implications. Geoscience, 21(2): 265-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702012.htm [38] Zhao, Z.D., Mo, X.X., Luo, Z.H., et al., 2003. Subduction of India beneath Tibet: Magmatism Evidence. Earth Science Frontiers, 10(3): 149-157 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303020.htm [39] Zhao, Z.D., Mo, X.X., Nomade, S., et al., 2006. Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau: Spatial and Temporal Distribution and Its Implications. Acta Petrologica Sinica, 22(4): 787-794 (in Chinese with English abstract). http://www.researchgate.net/publication/279756550_Post-collisional_ultrapotassic_rocks_in_Lhasa_Block_Tibetan_Plateau_Spatial_and_temporal_distribution_and_its_implications [40] Zheng, L.L., Geng, Q.R., Dong, H., et al., 2003. The Discovery and Significance of the Relicts of Ophiolitic Mélanges along the Parlung Zangbo in the Bomi Region, Eastern Xizang. Sedimentary Geology and Tethyan Geology, 23(1): 27-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200301003.htm [41] Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009. Zircon U-Pb Dating and In-Situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lasna Terrane, Southern Tibet: Implications for Permian Collisional Orogeny and Paleogeography. Tectonophysics, 469(1-4): 48-60. doi: 10.1016/j.tecto.2009.01.017 [42] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009a. Petrogenesis of Highly Fractionated I-Type Granites in the Chayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China (Ser. D), 39(7): 833-848 (in Chinese). [43] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009b. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution: New Perspective. Earth Science Frontiers, 16(2): 1-20 (in Chinese with English abstract). http://www.researchgate.net/publication/260835271_Permian_and_Early_Cretaceous_tectonomagmatism_in_southern_Tibet_and_Tethyan_evolution_New_perspective [44] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. doi: 10.1016/j.epsl.2010.11.005 [45] 陈炜, 马昌前, 宋志前, 等, 2011. 西藏冈底斯带中南部与俯冲有关的早侏罗世花岗闪长岩: 锆石U-Pb年代学及地球化学证据. 地质科技情报, 30(6): 1-12. doi: 10.3969/j.issn.1000-7849.2011.06.001 [46] 董国臣, 莫宣学, 赵志丹, 等, 2006. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据. 岩石学报, 22(4): 835-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604007.htm [47] 耿全如, 潘桂棠, 金振民, 等, 2005. 西藏冈底斯带叶巴组火山岩地球化学及成因. 地球科学——中国地质大学学报, 30(6): 747-760. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506010.htm [48] 和钟铧, 杨德明, 郑常青, 等, 2006. 冈底斯带门巴花岗岩同位素测年及其对新特提斯俯冲时代的约束. 地质论评, 52(1): 100-106. doi: 10.3321/j.issn:0371-5736.2006.01.013 [49] 侯增谦, 莫宣学, 高永丰, 等, 2006. 印度大陆与亚洲大陆早期碰撞过程与动力学模型——来自西藏冈底斯新生代火成岩证据. 地质学报, 80(9): 1235-1248. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609001.htm [50] 李才, 王天武, 李惠民, 等, 2003. 冈底斯地区发现印支期巨斑花岗闪长岩: 古冈底斯造山的存在证据. 地质通报, 22(5): 364-366. doi: 10.3969/j.issn.1671-2552.2003.05.011 [51] 李光明, 芮宗瑶, 2004. 西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄. 大地构造与成矿学, 28(2): 165-170. doi: 10.3969/j.issn.1001-1552.2004.02.008 [52] 李化启, 2009. 拉萨地体中的印支期造山作用及其地质意义(博士学位论文). 北京: 中国地质科学院. [53] 廖忠礼, 莫宣学, 潘桂棠, 等, 2006. 初论西藏过铝质花岗岩. 地质通报, 25(7): 813-821. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607008.htm [54] 刘琦胜, 江万, 简平, 等, 2006. 宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征. 岩石学报, 22(3): 643-652. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603013.htm [55] 莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [56] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [57] 曲晓明, 侯增谦, 辛洪波, 2006. 西藏冈底斯碰撞造山带两套埃达克岩的锆石SHRIMP U-Pb年龄及地球化学特征. 矿床地质, 25(增刊): 419-422. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1111.htm [58] 芮宗瑶, 侯增谦, 曲晓明, 等, 2003. 冈底斯斑岩铜矿成矿时代及青藏高原隆升. 矿床地质, 22(3): 217-225. doi: 10.3969/j.issn.0258-7106.2003.03.001 [59] 王立全, 潘桂棠, 朱弟成, 等, 2008. 西藏冈底斯带石炭纪—二叠纪岛弧造山作用: 火山岩和地球化学证据. 地质通报, 27(9): 1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012 [60] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1602. doi: 10.3321/j.issn:0023-074X.2004.16.002 [61] 张宏飞, 徐旺春, 郭建秋, 等, 2007. 冈底斯印支期造山事件: 花岗岩类锆石U-Pb年代学和岩石成因证据. 地球科学——中国地质大学学报, 32(2): 156-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702001.htm [62] 张旗, 潘国强, 李承东, 等, 2007. 花岗岩构造环境问题: 关于花岗岩研究的思考之三. 岩石学报, 23(11): 2683-2698. doi: 10.3969/j.issn.1000-0569.2007.11.002 [63] 赵志丹, 莫宣学, 董国臣, 等, 2007. 青藏高原Pb同位素地球化学及其意义. 现代地质, 21(2): 265-274. doi: 10.3969/j.issn.1000-8527.2007.02.011 [64] 赵志丹, 莫宣学, 罗照华, 等, 2003. 印度—亚洲俯冲带结构——岩浆作用证据. 地学前缘, 10(3): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303020.htm [65] 赵志丹, 莫宣学, Nomade, S., 等, 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22(4): 787-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604003.htm [66] 郑来林, 耿全如, 董翰, 等, 2003. 波密地区帕隆藏布残留蛇绿混杂岩带的发现及其意义. 沉积与特提斯地质, 23(1): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200301003.htm [67] 朱弟成, 莫宣学, 王立全, 等, 2009a. 西藏冈底斯东部察隅高分异I型花岗岩成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑), 39(7): 833-848. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm [68] 朱弟成, 莫宣学, 赵志丹, 等, 2009b. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点. 地学前缘, 16(2): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200902002.htm