Effects of Geo-stress on Carbonate Dissolution and Karst Evolution
-
摘要: 地应力对碳酸盐岩溶解和岩溶发育的影响研究是一个值得注意但又长期被忽视的问题, 结合地球化学、地质热力学、矿物岩石学、岩石弹塑性力学方面的知识, 在理论上全面地分析地应力的影响.研究表明, 在应力作用下, 碳酸盐岩岩体内应变能提高、溶解反应自由能增加、裂隙发育特征与水流运动条件发生变化, 使得碳酸盐岩固体表面处溶解物饱和浓度增大, 改变了岩体内水流的厚度、水流流态以及水中碳酸盐岩溶解物浓度, 从而影响了碳酸盐岩的溶解速率; 且应力的存在改变了有效的水岩相互作用面积; 应力作用下碳酸盐岩溶解存在的"应力-溶解"耦合竞争循环机制使得岩溶发育出现混沌现象和自组织行为, 初始应力介入所导致的一个很微小的影响因可被迅速放大至成百上千倍而不可忽略, 自然界中碳酸盐岩岩体内溶解和结晶并存、串珠状溶洞以及孤立溶洞的形成发育机制一定程度上可归结为应力溶解自组织行为的结果.Abstract: It is worthy of attention yet has been neglected for long time to explore effects of geo-stress on carbonate dissolution and karst evolution. A comprehensive analysis about the effects of geo-stress is carried out based on theories of geochemistry, mineralogy, petrology, geo-thermodynamics, and plastoelasticity in this study. The results reveal that the involvement of stress can change the dissolution rate of carbonate rocks by raising the strain energy and free energy of dissolution and changing the fracture characteristics and groundwater movement in carbonate rock, which leads to an increase of saturated concentration dissolved carbonate matters on the water-rock interface and changes of the depth and flow pattern of water and concentration of dissolved carbonate matters in water in carbonate rock fractures, and which can change the active area of interaction between carbonate rock and water in turn. Moreover, there exists a coupling and competitive mechanism because of stress-dissolution in carbonic rocks, which leads to behaviors of chaos and self-organization in the karst evolution. And so the effect of stress should not be ignored due to the fact that a minor change in the beginning aroused by stress can lead to great change in the evolution progress of karst, and the natural phenomenon of coexistence between dissolution and precipitation, moniliform distributed karst caves and isolated karst caves may be the results of the self-organization because of coupling and competitive behaviors aroused by stress-dissolution.
-
表 1 施加不同压力后的自由能变、活度及溶解速率比
Table 1. Free energy change, activity and dissolution rate of carbonate solid under different pressures
P(MPa) ΔGP0→Pe(J·mol-1) aCaCO3(s) Rp/R0 溶解速率增长幅度(%) 10 0.948 616 6 1.000 383 0 1.000 127 6 0.01 50 23.715 415 1.009 618 0 1.003 195 8 0.32 90 76.837 945 1.0314 993 1.0103 914 1.04 125 148.221 34 1.061 651 0 1.020 141 9 2.01 150 213.438 73 1.089 968 0 1.029 132 4 2.91 200 379.446 64 1.165 502 8 1.052 376 4 5.24 280 743.715 40 1.350 100 0 1.105 236 9 10.52 300 853.754 94 1.411 415 9 1.121 721 4 12.17 400 1517.786 6 1.845 242 1 1.226 547 7 22.65 -
[1] Dreybrodt, W., 1988. Processes in Karst Systems: Physics, Chemistry and Geology. SpringerVerlag, Berlin. [2] Dreybrodt, W., 1996. Principles of Early Development of Karst Conduits under Natural and Man-Made Conditions Revealed by Mathematical Analysis of Numerical Models. Water Resources Res. , 32(9): 2923-2935. doi: 10.1029/96WR01332 [3] Gratier, J.P., 1993. Experimental Pressure Solution of Halite of an Indenter Technique. Geophys. Res. Lett. , 20(15): 1647-1650. doi: 10.1029/93GL01398 [4] Han, S.P., Xu S.G., 2005. Experimental Study on Size Effect in the Uniaxial Compression of Lime Rock. Mining R & D, 25(2): 17-20 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KYYK200502005.htm [5] Institute of Geology and Geophysics, CAS, Institute of Water Conservancy and Hydroelectricity of Guizhou, 2006. Investigation on the Karsts Seepage in Reservoir Head Region of the First Stage of Qianzhong Water Conservancy Project, Guizhou (in Chinese). [6] Jiang, P.M., 1989. Foundations of Geological Thermodynamics. Science Press, Beijing(in Chinese). [7] Jian, W.X., Tang, H.M., Liu, Y.R., et al., 2004. Karst Development at the Left Bank of the Pingzhai Dam Site and Its Influences on Construction of the Dam. Journal of Engineering Geology, 12(4): 373-379 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=11422023 [8] Jing, F., Sheng, Q., Zhang, Y.H., et al., 2007. Research on Distribution Rule of Shallow Crustal Geostress in China Mainland. Chinese Journal of Rock Mechanics and Engineering, 26(10): 2056-2062 (in Chinese with English abstract). http://www.oalib.com/paper/1485737 [9] Li, X.P., Wang, B., Zhou, G.L., 2012. Research on Distribution Rule of Geostress in Deep Stratum in Chinese Mainland. Chinese Journal of Rock Mechanics and Engineering, 31(Suppl. 1): 2875-2880 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2012S1035.htm [10] Liu, L.M., Wu, Y.Z., 1996. Chemical Behaviour of Shear-Stressed Crystalline Minerals and Discussion of Its Geological Implication. Geology and Prospecting, 32(4): 26-31 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKT604.004.htm [11] Liu, Z.H., Dreybrodt, W., Han, J., et al., 2005. Equilibrium Chemistry of the CaCO3-CO2-H2O System and Discussions. Carsologica Sinica, 24(1): 1-14 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_carsologica-sinica_thesis/0201252316790.html [12] Lu, M.W., Luo, X.F., 2001. Foundations of Elasticity. Tsinghua University Press, Beijing (in Chinese). [13] Pan, J.G., Wei, P.S., Cai, Z.X., et al., 2012. Reservoir Architectural System in the Middle-Lower Ordovician Carbonate Rock of Tazhong Areas in Tarim. Earth Science—Journal of China University of Geosciences, 37(4): 751-762 (in Chinese with English abstract). [14] Peng, B., Chen, G.H., 2002. Some Important Structure-Fluid Interactions during the Geological Processes. Geological Review, 48(5): 495-504 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200205007.htm [15] Qian, H.T., Tan, Z.S., Li, S.D., et al., 2010. Analysis of Effect of Stress on Dissolution Mechanism of Salt Rock. Chinese Journal of Rock Mechanics and Engineering, 29(4): 757-764 (in Chinese with English abstract). [16] Qian, H.T., Tan, Z.S., Wang, S.J., et al. 2010. Review and Prospect of Research on Dissolution Mechanism of Carbonate Rock. Yellow River 32(7): 130-132 (in Chinese with English abstract). [17] Qiao, W., Li, W.P., 2011. Effect of Geo-stress on Permeability of Groundwater in Karst-Fractured Rock Mass. Journal of China University of Mining & Technology, 40(1): 73-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201101012.htm [18] Research Group of Karsts, Institute of Geology, CAS, 1979. Research of China Karsts. Science Press, Beijing(in Chinese). [19] Shen, J.F., Li, Y.Y., Xu, R.C., et al., 1996. Research on the Karst in Qingjiang River Basin. Geological Publishing House, Beijing (in Chinese). [20] Shen, Z.L., Wang, Y.X., Guo, H.M., 2012. Opportunities and Challenges of Water-Rock Interaction Studies. Earth Science—Journal of China University of Geosciences, 37(2): 207-219. (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=42100914 [21] Sun, Y., Xu, S.J., Liu, D.L., et al., 1998. Introduction to Geochemistry of Fault Structure. Science Press, Beijing (in Chinese). [22] Tang, Y.C., Zhou, H., Feng, X.T., et al., 2008. Study of Dissolving Model under Effect of Stress for Rock Salt. Rock and Soil Mechanics, 29(2): 296-302 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ytlx200802002 [23] Wang, J.M., 1979. Introduction to Stress Mineral. Geological Publishing House, Beijing (in Chinese). [24] Wang, Y., 1982. Compaction and Pressure Solution in Carbonate Rock. In: Institute of Geology, Chinese Academy of Sciences, ed., Research of Petrology (1). Geological Publishing House, Beijing(in Chinese). [25] Yu, C.W., 1996. The Generalized Geochemistry Kinetics. Exploration of Nature, 15(4): 41-44 (in Chinese). [26] Zhang, J.X., Ren, X.H., Jiang, H.D., et al., 2006. Main Geological Problems in Diversion Tunnel Construction at Jinping Second Class Waterpower Station. Advances in Science and Technology of Water Resources, 26(6): 66-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLSD200606019.htm [27] Zhang, S.C., Pan, L.H., Zhang, J., et al., 2012. An Experimental Study of In-Situ Stresses of Carbonate Resevoirs in Tahe Oilfield. Chinese Journal of Rock Mechanics and Engineering, 31(Suppl. 1): 2888-2893 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2012S1037.htm [28] Zhao, Z.Y., 1986. Pressure Solution—An Important Deformation Mechanism. Acta Petrologica Sinica, 2(4): 69-72 (in Chinese with English abstract). [29] Zheng, W.Z., Cao, Z.Q., Wei, Z., et al., 1989. Petrofabric Because of Pressure Solution and Its Research Significance: A Case Study of Permo-Triassic Carbonic Rock in the Region from South Shaanxi to North Sichuan in China. Geology of Chemical Minerals, (2): 106-114(in Chinese). [30] Zhou, Y., 1991. Pressure Solution and Associated Tectonic Differentiation in Rock Deformation. Geotectonica et Metallogenia, 15(2): 144-151 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK199102007.htm [31] 韩素平, 徐素国, 2005. 石灰岩单轴压缩尺度效应试验研究. 矿业研究与开发, 25(2): 17-20. doi: 10.3969/j.issn.1005-2763.2005.02.006 [32] 江培谟, 1989. 地质热力学基础. 北京: 科学出版社. [33] 简文星, 唐辉明, 刘佑荣, 等, 2004. 平寨坝址左岸岩溶发育规律及其对建坝条件的影响. 工程地质学报, 12(4): 373-379. doi: 10.3969/j.issn.1004-9665.2004.04.007 [34] 景峰, 盛谦, 张勇慧, 等, 2007. 中国大陆浅层地壳实测地应力分布规律研究. 岩石力学与工程学报, 26(10): 2056-2062. doi: 10.3321/j.issn:1000-6915.2007.10.014 [35] 李新平, 汪斌, 周桂龙, 2012. 我国大陆实测深部地应力分布规律研究. 岩石力学与工程学报, 31(增刊1): 2875-2880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1035.htm [36] 刘亮明, 吴延之, 1996. 剪切应力作用下晶质矿物的化学行为及其地质意义. 地质与勘探, 32(4): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT604.004.htm [37] 刘再华, Drebrodt, W., 韩军, 等, 2005. CaCO3-CO2-H2O岩溶系统的平衡化学及其分析. 中国岩溶, 24(1): 1-14. doi: 10.3969/j.issn.1001-4810.2005.01.001 [38] 陆明万, 罗学富, 2001. 弹性理论基础. 北京: 清华大学出版社. [39] 潘建国, 卫平生, 蔡忠贤, 等, 2012. 塔中地区中-下奥陶统碳酸盐岩孔洞-裂缝储集系统划分及其特征. 地球科学——中国地质大学学报, 37(4): 751-762. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204015.htm [40] 彭渤, 陈广浩, 2002. 地质过程中几种重要的构造—流体作用. 地质论评, 48(5): 495-504. doi: 10.3321/j.issn:0371-5736.2002.05.007 [41] 钱海涛, 谭朝爽, 李守定, 等, 2010. 应力对岩盐溶蚀机制的影响分析. 岩石力学与工程学报, 29(4): 757-764. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004015.htm [42] 钱海涛, 谭朝爽, 王思敬, 等, 2010. 碳酸盐岩溶解动力学机制研究现状与思考. 人民黄河, 32(7): 130-132. doi: 10.3969/j.issn.1000-1379.2010.07.058 [43] 乔伟, 李文平, 2011. 地应力对岩溶裂隙含水介质渗透特性的影响. 中国矿业大学学报, 40(1): 73-79. doi: 10.3969/j.issn.1009-105X.2011.01.014 [44] 沈继方, 李焰云, 徐瑞春, 等, 1996. 清江流域岩溶研究. 北京: 地质出版社. [45] 沈照理, 王焰新, 郭华明, 2012. 水-岩相互作用研究的机遇与挑战. 地球科学——中国地质大学学报, 37(2): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202004.htm [46] 孙岩, 徐士进, 刘德良, 等, 1998. 断裂构造地球化学导论. 北京: 科学出版社. [47] 汤艳春, 周辉, 冯夏庭, 等, 2008. 应力作用下岩盐的溶蚀模型研究. 岩土力学, 29(2): 296-302. doi: 10.3969/j.issn.1000-7598.2008.02.002 [48] 王家萌, 1979. 应力矿物概论. 北京: 地质出版社. [49] 王尧, 1982. 碳酸盐岩中的压密和压溶作用. 见: 中国科学院地质研究所编, 岩石学研究(第一辑). 北京: 地质出版社. [50] 於崇文, 1996. 广义地球化学动力学. 大自然探索, 15(4): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT604.005.htm [51] 张继勋, 任旭华, 姜弘道, 等, 2006. 锦屏二级水电站引水隧洞主要工程地质问题分析. 水利水电科技进展, 26(6): 66-70. doi: 10.3880/j.issn.1006-7647.2006.06.017 [52] 张士诚, 潘林华, 张劲, 等, 2012. 塔河碳酸盐岩储层地应力实验研究. 岩石力学与工程学报, 31(增刊1): 2888-2893. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1037.htm [53] 赵中岩, 1986. 压溶——一个重要的变形机制. 岩石学报, 2(4): 69-72. doi: 10.3321/j.issn:1000-0569.1986.04.006 [54] 郑文忠, 曹作奇, 韦钊, 等, 1989. 碳酸盐岩中的压溶组构及其研究意义: 以陕南-川北地区二叠-三叠系碳酸盐岩为例. 化工地质, (2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC198902010.htm [55] 中国科学院地质研究所岩溶研究组, 1979. 中国岩溶研究. 北京: 科学出版社. [56] 中国科学院地质与地球物理研究所, 贵州省水利水电勘测设计研究院, 2006. 贵州: 黔中水利枢纽一期工程库首岩溶渗漏问题研究. [57] 周翊, 1991. 岩石变形中的压溶作用及相伴的构造分异作用. 大地构造与成矿学, 15(2): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199102007.htm