Landslide Hazard Warning Based on Effective Rainfall Intensity
-
摘要: 选取湖北省恩施地区1 000 km2区域作为典型研究区, 在全面分析该区域历史滑坡资料的基础上, 根据该区滑坡生成与地层岩性之间的关系, 将研究区地层划分为高、中、低3类易发性岩组.分岩组统计降雨监测数据与历史滑坡信息, 得出有效降雨强度与关键降雨持续时间的散点图, 由此确定不同滑坡发生概率的有效降雨强度阈值, 提出该区的滑坡灾害危险性预警判别模型.基于样本区统计数据建立滑坡预测指标体系, 运用GIS得出研究区域的滑坡空间易发性区划结果, 并根据不同易发岩组-有效降雨强度模型, 叠加滑坡灾害易发性分区结果与降雨危险性预警等级分级结果, 对研究区的滑坡灾害危险性进行了预测预警.结果表明: 不同易发岩组-有效降雨强度模型所得预警结果与实际情况吻合, 预警模型具有考虑全面和预警精度高的特点, 在实际预警中切实可用.Abstract: A region of 1 000 km2 in Enshi, Hubei Province is chosen as the typical study area, and its historical landslide data are comprehensively analyzed in this paper. The strata in the study area are divided into three types including high, middle and low susceptible petrofabrics according to the relationship between local landslide formation and lithology. The scatter diagrams about effective rainfall intensity and critical duration are obtained based on rainfall monitoring data and historical information of landslides in each petrofabric. Thus effective rainfall intensity thresholds are determined and landslide hazard warning model of the study area is suggested. In this study, landslide prediction evaluating system is firstly established based on data of sample area, and then landslide susceptibility distribution map is obtained by using GIS. According to Different Susceptible Petrofabric-Effective Rainfall Intensity Models, the landslide hazard warning is realized by overlaying landslide susceptibility distribution map and rainfall risk grade distribution results. Results show that the hazard warning results fit well with the actual situation. Thus, the warning model is verified to be effective, accurate and comprehensive to provide scientific evidence for preventing and reducing disasters.
-
Key words:
- landslide /
- susceptible petrofabric /
- effective rainfall intensity /
- hazard warning
-
表 1 滑坡发生前6日有效降雨量与滑坡发生的相关性
Table 1. Correlation between landslide and effective rainfall 6 days before the occurence of landslide
降雨量 1日有效降雨量 前2日有效降雨量 前3日有效降雨量 前4日有效降雨量 前5日有效降雨量 前6日有效降雨量 一周累计降雨量 一次过程降雨量 一月累计降雨量 相关系数 0.550 0.546 0.607 0.560 0.669 0.582 0.346 0.378 0.486 表 2 预警区等级初步划分
Table 2. Classification of hazard level in warning area
空间区划 低危险性 中危险性 高危险性 高易发区 不预警区(2级) 4级预警区 5级预警区 中易发区 不预警区(1级) 3级预警区 4级预警区 低易发区 不预警区(1级) 3级预警区 4级预警区 不易发区 不预警区(1级) 不预警区(1级) 不预警区(2级) 表 3 预警等级含义及其防御措施
Table 3. Meaning of warning level and corresponding defense measures
预警等级灾害发生情况(24 h内) 防御措施 1级预警区 灾害发生可能性极小 不采取措施 2级预警区 灾害发生可能性较小 启动重要灾害隐患点的群测群防工作 3级预警区 灾害发生可能性中等(注意) 注意对灾害点的监测,采取防御措施,提醒灾害易发区内的人员关注灾害动态 4级预警区 灾害发生可能性较大(预警) 应加强对灾害点的监测,对灾害危险区应开展预防应急措施 5级预警区 灾害发生可能性极大(警报) 应全天候对灾害点进行监测,建立防御措施和救灾体系、组织紧急疏散通道等 表 4 有效降雨引起的滑坡危险性等级划分
Table 4. Risk grades distribution for landslide induced by effective rainfall
散点所处位置 10%下方 10%~25% 25%~50% 50%上方 危险性等级 无危险性 低危险性 中危险性 高危险性 表 5 2007年8月1日滑坡前期降雨数据
Table 5. Antecedent rainfall data of landslide occurred on August 1, 2007
时间 7月27日 7月28日 7月29日 7月30日 7月31日 8月1日 降雨量(mm) 2.6 2.2 20.0 39.5 3.5 4.6 表 6 2007年8月1日滑坡危险性预警等级
Table 6. Hazard warning classification of landslide occurred on August 1, 2007
岩组 高易发岩组 中易发岩组 低易发岩组 滑坡发生概率(%) 50 25 10 50 25 10 50 25 10 有效降雨强度阈值(mm/d) 8.77 3.97 1.94 15.00 7.07 3.33 18.68 12.01 7.72 -
[1] Aleotti, P., 2004. A Warning System for Rainfall-Induced Shallow Failures. Engineering Geology, 73(3): 247-265. doi: 10.1016/j.enggeo.2004.01.007 [2] Brand, E.W., Premchitt, J., Phillipson, H.B., 1984. Relationship between Rainfall and Landslide in Hong Kong. Proceeding 4th International Symposium on Landslides, Toronto, Canada, 1: 377-384. http://www.researchgate.net/publication/308105129_Relationship_between_rainfall_and_landslides_in_Hong_Kong [3] Campbell, R.H., 1974. Debris Flow Originating from Soil Slip during Rainstorm in Southern California. Quarterly Journal of Engineering Geology and Hydrogeology, 7(4): 339-349. doi: 10.1144/GSL.QJEG.1974.007.04.04 [4] Cannon, S.H., Ellen, S.D., 1985. Rainfall Conditions for Abundant Debris Avalanches, San Francisco Bay Region, California. California Geology, 38(12): 267-272. [5] Dieu, T.B., Pradhan, B., Lofman, O., et al., 2013. Regional Prediction of Landslide Hazard Using Probability Analysis of Intense Rainfall in the Hoa Binh Province, Vietnam. Natural Hazards, 66(2): 707-730. doi: 10.1007/s11069-012-0510-0 [6] Fukuzono, T., 1990. Recent Studies on Time Prediction of Slope Failure. Landslide News, 4: 9-12. [7] Glade, T., 1997. The Temporal and Spatial Occurrence of Rainstorm-Triggered Landslide Events in New Zealand. Department of Geography, Victoria University of Wellington, Canada. [8] Jian, W.X., Yang, J., 2013. Formation Mechanism of No. 1 Part Slide of Huangtupo Landslide in the Three Gorges Reservoir Area. Earth Science—Journal of China University of Geosciences, 38(3): 625-631 (in Chinese with English abstract). [9] Li, Y., 2005. Method for the Warning of Precipitation-Induced Landslides(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [10] Montrasio, L., Valentino, R., Losi, G.L., 2011. Towards a Real-Time Susceptibility Assessment of Rainfall-Induced Shallow Landslides on a Regional Scale. Natural Hazards and Earth System Sciences, 11(7): 1927-1947. doi: 10.5194/nhess-11-1927-2011 [11] Qiao, J.P., Yang, Z.J., Tian, H.L., 2009. Probability Analysis Based Method for Rainfall-Induced Landslide Warning. Journal of Engineering Geology, 17(3): 343-348(in Chinese with English abstract). [12] Schmidt, J., Turek, G., Clark, M.P., et al., 2008. Probabilistic Forecasting of Shallow, Rainfall-Triggered Landslides Using Real-Time Numerical Weather Predictions. Natural Hazards and Earth System Sciences, 8(2): 349-357. doi: 10.5194/nhess-8-349-2008 [13] Sheng, X.J., 2011. Research and Application on the Approach of Rainfall-Induced Landslides Meteorological Forecast and Warning Based on Landslide Hazard Zoning(Dissertation). Chongqing University, Chongqing (in Chinese with English abstract). [14] Sun, M.L., 2012. Study on the Effect of Rainfall to Anbushan Landslide (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [15] Takara, K., Yamashiki, Y., Sassa, K., et al., 2010. A Distributed Hydrological-Geotechnical Model Using Satellite-Derived Rainfall Estimates for Shallow Landslide Prediction System at a Catchment Scale. Landslides, 7(3): 237-258. doi: 10.1007/s10346-010-0214-z [16] Wieczorek, G.F., 1987. Effect of Rainfall Intensity and Duration on Debris Flows in Central Santa Cruz Mountains, California. Reviews in Engineering Geology, 7(1): 93-104. [17] Yin, K.L., Liu, Y.L., Wang, Y., et al., 2012. Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir. Earth Science—Journal of China University of Geosciences, 37(5): 1067-1074 (in Chinese with English abstract). [18] Yin, K.L., Zhang, G.R., 2003. A Real Time Warning System Design of Geo-Hazards Supported by WebGIS in Zhejiang Province, China. Hydrogeology and Engineering Geology, 46(3): 19-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200303005.htm [19] Zhang, G.R., Yin, K.L., Liu, L.L., et al., 2005. A Real-Time Regional Geological Hazard Warning System in Terms of WebGIS and Rainfall. Rock and Soil Mechanics, 26(8): 1312-1317 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_rock-soil-mechanics_thesis/0201252073611.html [20] 简文星, 杨金, 2013. 三峡库区黄土坡滑坡Ⅰ号崩滑体成因. 地球科学——中国地质大学学报, 38(3): 625-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303022.htm [21] 李媛, 2005. 区域降雨型滑坡预报预警方法研究(博士学位论文). 北京: 中国地质大学. [22] 乔建平, 杨宗佶, 田宏岭, 2009. 降雨滑坡预警的概率分析方法. 工程地质学报, 17(3): 343-348. doi: 10.3969/j.issn.1004-9665.2009.03.010 [23] 盛晓杰, 2011. 基于边坡危险性区划的降雨型滑坡预报预警方法研究及应用(硕士学位论文). 重庆: 重庆大学. [24] 孙鸣雷, 2012. 降雨对温州市安埠山滑坡稳定性影响研究(硕士学位论文). 北京: 中国地质大学. [25] 殷坤龙, 刘艺梁, 汪洋, 等, 2012. 三峡水库库岸滑坡涌浪物理模型试验. 地球科学——中国地质大学学报, 37(5): 1067-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205022.htm [26] 殷坤龙, 张桂荣, 2003. 基于WebGIS的浙江省地质灾害实时预警预报系统设计. 水文地质工程地质, 46(3): 19-23. doi: 10.3969/j.issn.1000-3665.2003.03.005 [27] 张桂荣, 殷坤龙, 刘礼领, 等, 2005. 基于WEBGIS和实时降雨信息的区域地质灾害预警预报系统. 岩土力学, 26(8): 1312-1317. doi: 10.3969/j.issn.1000-7598.2005.08.033