Sedimentary Characteristics and Petroleum Geological Significance of Ancient Shelf Sand Ridges: A Case Study of Lower Member of Silurian Kepingtage Formation in Tarim Basin
-
摘要: 塔里木盆地顺托果勒低隆起志留系柯坪塔格组下段发育的陆架砂脊为了解古陆架砂脊沉积建造提供了一个理想实例.利用测井和岩心资料, 根据沉积物的岩性和沉积构造特征, 将陆架砂脊划分为6个岩性相: 块状层理中-细砂岩性相(FA1)、丘状交错层理中-细砂岩性相(FA2)、含撕裂状泥砾的中-细砂岩性相(FA3)、双向交错层理含粘土层的细砂岩性相(FA4)、潮汐层理的细砂岩与泥岩互层岩性相(FA5)和水平层理陆架泥岩性相(FA6);依据岩性相的组合特征, 将陆架砂脊划分为4个沉积微相: 砂脊核微相(FA1-FA2-FA3)、砂脊内缘微相(FA4)、砂脊外缘微相(FA5)和陆架泥微相(FA6);陆架砂脊沉积受陆架潮汐、风暴浪的共同影响.利用钻井约束的三维地震切片属性分析, 确定了NE-SW向和NW-SE向两组古陆架砂脊的平面展布特征.古陆架砂脊储层为特低孔、特低渗, 其中砂脊核微相储层物性相对较好, 平均孔隙度6.96%、平均渗透率0.34×10-3 μm2; 工业油流主要集中在砂脊核微相储层.古陆架砂脊的砂体多呈脊状或丘状并被厚层的陆架泥披覆, 常形成同沉积的微幅背斜-岩性圈闭.Abstract: Ancient shelf sand ridge deposited in Lower member of Silurian Kepingtage Formation of Shuntuoguole uplift, Tarim basin, provides an ideal example to understand its sedimentary formation characteristics. By using well-logging and core data, shelf sand ridge is divided into 6 lithofacies: massive bedding medium-fine sandstone (FA1), hummocky cross bedding medium-fine sandstone (FA2), muddy conglomerate-bearing medium-fine sandstone (FA3), clay layer-bearing bimodal cross bedding fine sandstone (FA4), tidal bedding fine sandstone interbedded with mudstone (FA5), horizontal bedding shelf mudstone (FA6) according to the lithology and sedimentary structure of sediments. In terms of lithofacies association characteristics, shelf sand ridge whose deposits are affected by shelf tide and storm wave is classified into 4 sedimentary microfacies: sand ridge core microfacies (FA1-FA2-FA3), sand ridge inner margin microfacies (FA4), sand ridge external margin (FA5) and shelf mud microfacies (FA6). The plane distribution characteristics of shelf sand ridge along NE-SW and NW-SE are determined through detailed analysis of three-dimensional seismic slice attributes calibrated with well data. Ancient shelf sand ridge reservoir has characteristics of extra low porosity and permeability, in which sand ridge core microfacies is better reservoir with average porosity 6.96%, average permeability 0.34×10-3 μm2, and is mainly industrial oil flow concentrated area. Syndepositional slightly anticline-lithologic traps are often formed since sandstones of shelf sand ridge present ridge or mound shape and draped by thick-layer shelf mudstone.
-
Key words:
- ancient shelf sand ridge /
- lithofacies /
- microfacies /
- Kepingtage Formation /
- petroleum geology /
- Tarim basin
-
表 1 陆架砂脊微相的砂/地、孔隙度和渗透率
Table 1. Sand/strata, porosity and permeability in shelf sand ridge microfacies
微相 砂/地(%) 孔隙度(%) 渗透率(10-3 μm2) 砂脊核微相 75~95 4.1~9.0 /6.96 0.05~2.99 /0.34 砂脊内缘微相 50~75 1.8~8.6 /5.41 0.02~2.55 /0.16 砂脊外缘微相 10~50 1.8~7.0 /4.32 0.01~1.12 /0.13 -
[1] Bergman, K.M., Walker, R.G., 1995. High-Resolution Sequence Stratigraphic Analysis of the Shannon Sandstone in Wyoming, Using a Template for Regional Correlation. Journal of Sedimentary Research, 65(2): 255-264. [2] Bergman, K.M., Walker, R.G., 1999. Campanian Shannon Sandstone: An Example of a Falling Stage Systems Tract Deposit. In: Bergman, K.M., Snedden, J.W., eds., Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation (SEPM Special Publication 64). Society of Economic Paleontologists, Mineralogists, Tulsa, 85-94. [3] Burton, J., Walker, R.G., 1999. Linear Shoreface Transgressive Shoreface Sandbodies Controlled by Fluctuations of Relative Sea Level: Lower Cretaceous Viking Formation in the Joffre-Mikwan-Fenn Area, Alberta, Canada. In: Bergman, K.M., Snedden, J.W., eds., Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation (SEPM Special Publication 64). Society of Economic Paleontologists, Mineralogists, Tulsa, 255-272. [4] Bassetti, M.A., Jouet, G., Dufois, F., et al., 2006. Sand Bodies at the Shelf Edge in the Gulf of Lions (Western Mediterranean): Deglacial History and Modern Processes. Marine Geology, 234(1-4): 93-109. doi: 10.1016/j.margeo.2006.09.010 [5] Bergman, K.M., 1994. Shannon Sandstone in Hartzog Draw-Heldt Draw Fields (Cretaceous, Wyoming, USA) Reinterpreted as Lowstand Shoreface Deposits. Journal of Sedimentary Research, 64(2): 184-201. doi: 10.1306/D4267F87-2B26-11D7-8648000102C1865D [6] Desjardins, P.R., Buatois, L.A., Pratt, B.R., et al., 2012. Sedimentological-Ichnological Model for Tide-Dominated Shelf Sandbodies: Lower Cambrian Gog Group of Western Canada. Sedimentology, 59(5): 1452-1477. doi: 10.1111/j.1365-3091.2011.01312.xv [7] Emery, K.O., 1968. Relict Sediments on Continental Shelves of World. AAPG Bulletin, 52(3): 445-464. http://www.researchgate.net/publication/259638062_Relict_Sediments_on_Continental_Shelves_of_the_World [8] Green, A.N., Smith, A.M., 2012. Can Ancient Shelf Sand Ridges be Mistaken for Gilbert-Type Deltas? Examples from the Vryheid Formation, Ecca Group, KwaZulu-Natal, South Africa. Journal of African Earth Sciences, 76: 27-33. doi: 10.1016/j.jafrearsci.2012.08.001 [9] Gao, Z.Y., Guo, H. L, An, H.T., et al., 2008. Genesis of Marine Sandstone Parasequence of Ordovician Lower Kepingtage Formation in the Western Margin of the Manjiaer Depression and Its Significance. Acta Geologica Sinica, 82(8): 1095-1102 (in Chinese with English abstract). http://www.researchgate.net/publication/291851643_Genesis_of_marine_sandstone_parasequence_of_Ordovician_Lower_Kepingtage_Formation_in_the_Western_Margin_of_the_Manjiaer_Depression_and_its_significance [10] Johnson, H.D., 1977. Shallow Marine Sand Bar Sequences: An Example from the Late Precambrian of North Norway. Sedimentology, 24(2): 245-270. doi: 10.1111/j.1365-3091.1977.tb00256.x [11] Jia, J.H., Zou. C.N., 2011. Reservoir and Oil-Gas Pool Characteristics of Paleozoic Marine Clastic Rocks in China. Earth Science—Journal of China University of Geosciences, 37(Suppl. 2): 55-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S2013.htm [12] Maceachern, J.A., Zaitlin, B.A., Pemberton, S.G., 1999. Coarse-Grained, Shoreline-Attached Marginal Marine Parasequences of the Viking Formation, Joffre Field, Alberta, Canada. In: Bergman, K.M., Snedden, J.W., eds., Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation (SEPM Special Publication 64). Society of Economic Paleontologists, Mineralogists, Tulsa, 273-296. [13] Plint, A.G., 1988. Sharp-Based Shoreface Sequences and "Offshore Bars" in the Cardium Formation of Alberta: Their Relationship to Relative Changes in Sea Level. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., eds., Sea Level Change: An Integrated Approach(SEPM Special Publication 42). Society of Economic Paleontologists, Mineralogists, Tulsa, 357-370. [14] Posamentier, H.W., Jervey, M.T., Vail, P.R., 1988. Eustatic Controls on Clastic Deposition I—Conceptual Framework. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., eds., Sea Level Change: An Integrated Approach(SEPM Special Publication 42). Society of Economic Paleontologists, Mineralogists, Tulsa, 109-124. [15] Park, S.C., Han, H.S., Yoo, D.G., 2003. Transgressive Sand Ridges on the Mid-Shelf of the Southern Sea of Korea (Korea Strait): Formation and Development in High-Energy Environments. Marine Geology, 193(1-2): 1-18. doi: 10.1016/S0025-3227(02)00611-4 [16] Posamentier, H.W., 2002. Ancient Shelf Ridges—A Potentially Significant Component of the Transgressive Systems Tract: Case Study from Offshore Northwest Java. AAPG Bulletin, 86(1): 75-106. doi: 10.1306/61EEDA44-173E-11D7-8645000102C1865D [17] Swift, D.J.P., Stanley, D.J., Curray, J.R., 1971. Relict Sediments on Continental Shelf: A Reconsideration. The Journal of Geology, 79(3): 322-346. doi: 10.1086/627629 [18] Swift, D.J.P., 1976. Continental Shelf Sedimentation. In: Stanley, D.J., Swift, D.J.P., Marine Sediment Transport and Environmental Management. Wiley, New York, 311-350. [19] Swift, D.J.P., Thorne, J.A., 1991. Sedimentation on Continental Margins, I: A General Model for Shelf Sedimentation. In: Swift, D.J.P., Oertel, G.F., Tillman, R.W., eds., Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence Stratigraphy. Blackwell Publishing Ltd., Oxford, UK, 3-31. doi: 10.1002/9781444303933.ch1 [20] Snedden, J.W., Dalrymple, R.W., 1999. Modern Shelf Sand Ridges: From Historical Perspective to a Unified Hydrodynamic and Evolutionary Model. In: Bergman, K.M., Snedden, J.W., eds., Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation (SEPM Special Publication 64). Society of Economic Paleontologists, Mineralogists, Tulsa, 13-28. [21] Snedden, J.W., Tillman, R.W., Kreisa, R.D., et al., 1994. Stratigraphy and Genesis of a Modern Shoreface-Attached Sand Ridge, Peahala Ridge, New Jersey. Journal of Sedimentary Research, 64(4): 560-581. http://www.researchgate.net/publication/284690647_Stratigraphy_and_Genesis_of_a_Modern_Shoreface-Attached_Sand_Ridge_Peahala_Ridge_New_Jersey [22] Snedden, J.W., Bergman, K.M., 1999. Isolated Shallow Marine Sand Bodies: Deposits for All Interpretations. In: Bergman, K.M., Snedden, J.W., eds., Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation (SEPM Special Publication 64). Society of Economic Paleontologists, Mineralogists, Tulsa, 1-12. [23] Suter, J.R., Clifton, H.E., 1999. The Shannon Sandstone and Isolated Linear Sand Bodies: Interpretations and Realizations. In: Bergman, K.M., Snedden, J.W., eds., Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation (SEPM Special Publication 64). Society of Economic Paleontologists, Mineralogists, Tulsa, 321-356. [24] Slatt, R.M., 1984. Continental Shelf Topography: Key to Understanding the Distribution of Shelf Sand Ridge Deposits from the Cretaceous Western Interior Seaway. AAPG Bulletin, 68(9): 1107-1120. http://www.researchgate.net/publication/291175104_Continental_shelf_topography_key_to_understanding_the_distribution_of_shelf_sand_ridge_deposits_from_the_Cretaceous_Western_Interior_Seaway [25] Slatt, R.M., 2006. Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists and Engineers. Elsevier, Amsterdam, 492. [26] Sullivan, M.D., van Wagoner, J.C., Jennette, D.C., et al., 1997. High Resolution Sequence Stratigraphy and Architecture of the Shannon Sandstone, Hartzog Draw Field, Wyoming: Implications for Reservoir Management. In: Shanley, K.W., Perkins, B.F., eds., Shallow Marine and Nonmarine Reservoirs: Sequence Stratigraphy, Reservoir Architecture and Production Characteristics. Gulf Coast Sec. Soc. Econ. Paleon. and Mineral. (SEPM) Foundation 18th Annual Res. Conf., Houston, 331-344. [27] Shang, K., Guo, H., Xia, Y.T., et al., 2013. Sedimentary Facies of Silurian Kepingtage Lower Member in Shuntuoguole Area, Middle Tarim Basin. Marine Origin Petroleum Geology, 18(3): 48-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201303007.htm [28] Twichell, D., Brooks, G., Gelfenbaum, G., et al., 2003. Sand Ridges off Sarasota, Florida: A Complex Facies Boundary on a Low-Energy Inner Shelf Environment. Marine Geology, 200(1-4): 243-262. doi: 10.1016/S0025-3227(03)00185-3 [29] Tillman, R.W., Martinsen, R.S., 1984. The Shannon Shelf-ridge Sandstone Complex, Salt Creek Anticline Area, Powder River Basin, Wyoming. In: Tillman, R.W., Siemers, C.T., eds., Siliciclastic Shelf Sedimentation. SEPM Special Publication, 34: 85-142. doi: 10.2110/pec.84.34.0085 [30] Tillman, R.W., Martinsen, R.S., 1987. Sedimentologic Model and Production Characteristics of Hartzog Draw Field, Wyoming: A Shannon Sandstone Shelf-Ridge Sandstone. In: Tillman, R.W., Weber, K.J., eds., Reservoir Sedimentology. SEPM Special Publication, 40: 15-112. [31] Walker, R.G., Bergman, K.M., 1993. Shannon Sandstone in Wyoming: A Shelf-Ridge Complex Reinterpreted as Lowstand Shoreface Deposits. Journal of Sedimentary Petrology, 63(5): 839-851. doi: 10.1306/D4267C21-2B26-11D7-8648000102C1865D [32] Xing, F.C., Bai, Z.R., Li, Z., et al., 2011. Early-Middle Silurian Sedimentary Successions and Their Response to Tectonism and Eustatic Fluctuations: A Case Study from the Outcrops in Keping Area, Tarim Basin. Earth Science—Journal of China University of Geosciences, 36(3): 541-554 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201103011.htm [33] Yang, W.D., 1983. The Age and Dynamical Sedimentary Features of the Shelf Sand out of Yangtze Estuary. Marine Geology & Quaternary Geology, 3(2): 41-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198302004.htm [34] Yang, C.S., 1989. Active, Moribund, and Buried Tidal Sand Ridges in the East China Sea and the Southern Yellow Sea. Marine Geology, 88(1-2): 97-116. doi: / 10.1016/0025-3227(89)90007-8 [35] Yin, P., 2003. Geomorphology and Internal Structure of Postglacial Tidal Sand Ridges on the East China Sea Shelf. Advances in Marine Science, 21(2): 181-187 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/552538 [36] Zhang, G.W., 1991. Formation and Evolution of Sand Ridges in the South Huanghai Sea Shelf. Marine Geology & Quaternary Geology, 11(2): 25-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ199102004.htm [37] 高志勇, 郭宏莉, 安海亭, 等, 2008. 塔里木盆地满加尔凹陷西缘奥陶系柯坪塔格组下段海相砂岩准层序成因与意义. 地质学报, 82(8): 1095-1102. doi: 10.3321/j.issn:0001-5717.2008.08.010 [38] 贾进华, 邹才能, 2012. 中国古生代海相碎屑岩储层与油气藏特征. 地球科学——中国地质大学学报, 37(S2): 55-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S2013.htm [39] 尚凯, 郭辉, 夏永涛, 等, 2013. 塔中顺托果勒地区志留系柯坪塔格组下段沉积相. 海相油气地质, 18(3): 48-54. doi: 10.3969/j.issn.1672-9854.2013.03.006 [40] 邢凤存, 白振瑞, 李祯, 等, 2011. 塔里木盆地早、中志留世沉积序列及其对构造-海平面变化的响应: 以柯坪露头区为例. 地球科学——中国地质大学学报, 36(3): 541-554. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201103011.htm [41] 杨文达, 1983. 长江口外陆架砂的形成时代与沉积动力特征. 海洋地质与第四纪地质, 3(2): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198302004.htm [42] 印萍, 2003. 东海陆架冰后期潮流砂脊地貌与内部结构特征. 海洋科学进展, 21(2): 181-187. doi: 10.3969/j.issn.1671-6647.2003.02.007 [43] 张光威, 1991. 南黄海陆架砂脊的形成与演变. 海洋地质与第四纪地质, 11(2): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199102004.htm