• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    页岩油富集可采主控因素分析: 以泌阳凹陷为例

    李吉君 史颖琳 章新文 陈祥 严永新 朱景修 卢双舫 王民

    李吉君, 史颖琳, 章新文, 陈祥, 严永新, 朱景修, 卢双舫, 王民, 2014. 页岩油富集可采主控因素分析: 以泌阳凹陷为例. 地球科学, 39(7): 848-857. doi: 10.3799/dqkx.2014.079
    引用本文: 李吉君, 史颖琳, 章新文, 陈祥, 严永新, 朱景修, 卢双舫, 王民, 2014. 页岩油富集可采主控因素分析: 以泌阳凹陷为例. 地球科学, 39(7): 848-857. doi: 10.3799/dqkx.2014.079
    Li Jijun, Shi Yinglin, Zhang Xinwen, Chen Xiang, Yan Yongxin, Zhu Jingxiu, Lu Shuangfang, Wang Min, 2014. Control Factors of Enrichment and Producibility of Shale Oil: A Case Study of Biyang Depression. Earth Science, 39(7): 848-857. doi: 10.3799/dqkx.2014.079
    Citation: Li Jijun, Shi Yinglin, Zhang Xinwen, Chen Xiang, Yan Yongxin, Zhu Jingxiu, Lu Shuangfang, Wang Min, 2014. Control Factors of Enrichment and Producibility of Shale Oil: A Case Study of Biyang Depression. Earth Science, 39(7): 848-857. doi: 10.3799/dqkx.2014.079

    页岩油富集可采主控因素分析: 以泌阳凹陷为例

    doi: 10.3799/dqkx.2014.079
    基金项目: 

    国家自然基金项目 41272152

    油气资源与探测国家重点实验室开放课题 PRP/open-1209

    黑龙江省普通高等学校新世纪优秀人才培养计划 1252-NCET-012

    详细信息
      作者简介:

      李吉君(1981-), 男, 博士, 副教授, 主要从事油气地质与地球化学研究.E-mail: 294292454@qq.com

    • 中图分类号: P618

    Control Factors of Enrichment and Producibility of Shale Oil: A Case Study of Biyang Depression

    • 摘要: 页岩油能否有效聚集并具可采性主要受控于6个方面因素, 即生烃基础、存储空间、保存条件、储层改造条件、原油物性和开发方式.目前已取得页岩油突破的安深1井、泌页1井开发层段有机质丰度高、有机质类型好, 页理、纹理及构造裂缝发育, 脆性矿物含量较高等有利条件, 但其泥页岩有机质成熟度较低, 在影响泥页岩含油率的同时, 对原油的物性也有较大影响, 且保存条件不佳, 地层无超压, 能量较低, 不利于页岩油的产出.今后, 泥页岩埋深较大的东南部地区可能是下步页岩油勘探开发的有利区.另外, 考虑到原油溶解气量对其物性的影响以及低渗储层的应力敏感性, 生产方面应尽量延缓储层压力的降低.

       

    • 图  1  泌阳凹陷核桃园组泥页岩含油性与有机质丰度的对应关系

      Fig.  1.  Corresponding relationship of shale oil-bearing property and abundance in the Hetaoyuan Formation, Biyang depression

      图  2  泌阳凹陷核桃园组泥页岩有机质类型(a)及其与含油性关系(b)

      Fig.  2.  Organic matter type (a) and its relationship with oil-bearing property (b) of the Hetaoyuan formation in Biyang depression

      图  3  泌阳凹陷泥页岩有机质成熟度随埋深的变化(a)及氯仿沥青“A”/TOC随埋深的变化(b)

      Fig.  3.  Variation of organic matter maturity (a) and "A"/TOC (b) with depth of shale in Biyang depression

      图  4  泌页1井综合柱状图

      Fig.  4.  Columnar section of Biye-1 Well

      图  5  泌页1井泥页岩层理(a)及高角度构造裂缝(b)

      a.2 437 m;b.2 420 m;岩心直径101 mm

      Fig.  5.  Shale beddings and tectoclases with high dip-angle of Biye-1 Well

      图  6  泌页1井泥页岩纹理发育情况

      a.块状泥岩2 427.6 m;b.页岩2 419.5 m

      Fig.  6.  Development of lamination in shales with (a) and without beddings (b)

      图  7  安深1井泥页岩基质孔隙

      a.泥岩2 418.55~2 418.85 m;b.白云质泥岩2 570.46~2 570.76 m

      Fig.  7.  Matrix pores of shale in Anshen-1 Well

      图  8  泌阳凹陷H33页岩油富集段地层岩性及测井响应特征

      Fig.  8.  Lithology and logging response characteristics of shale oil enrichment segment in the H33 formation, Biyang depression

      图  9  泌阳凹陷泥页岩矿物组成

      Fig.  9.  Mineral composition of shale in Biyang depression

      图  10  泌阳凹陷原油及泥页岩抽提物胶质、沥青质含量随深度的变化规律

      Fig.  10.  Content variation of the resins and asphaltenes with depth of crude oil and chloroform extract in Biyang depression

      图  11  泌阳凹陷原油密度、粘度随深度变化规律

      Fig.  11.  Variation of oil density and viscosity with depth in Biyang depression

      图  12  泌阳凹陷泌页1井页岩油气产能曲线

      Fig.  12.  Shale oil and gas deliverability curve of Biye-1 Well in Biyang depression

      表  1  不同丰度、类型和成熟度有机质理论生烃量

      Table  1.   Hydrocarbon generation in the theory of organic matter with different abundance, type, and maturity

      TOC(%) 生烃潜力(mg/g·TOC) 生烃转化率(%) 生油量(%) 生气量(m3/t岩石)
      1 300 30 0.05 1.22
      1 300 60 0.09 2.37
      1 500 30 0.13 2.04
      1 500 60 0.25 3.95
      2 300 30 0.09 2.44
      2 300 60 0.18 4.74
      2 500 30 0.25 4.07
      2 500 60 0.50 7.90
      下载: 导出CSV
    • [1] Cardott, B.J., 2012. Thermal Maturity of Woodford Shale Gas and Oil Plays, Oklahoma, USA. International Journal of Coal Geology, 103: 109-119. doi: 10.1016/j.coal.2012.06.004
      [2] Chen, X., Wang, M., Yan, Y.X., et al., 2011. Accumulation Conditions for Continental Shale Oil and Gas in the Biyang Depression. Oil & Gas Geology, 32(4): 568-576(in Chinese with English abstract). http://www.researchgate.net/publication/298104748_Accumulation_conditions_for_continental_shale_oil_and_gas_in_the_Biyang_Depression
      [3] Ding, W.L., Zhang, B.W., Li, T.M., 2003. Formation of Non-Tectonic Fractures in Mudstones in Gulong Depression. Oil & Gas Geology, 24(1): 50-54(in Chinese with English abstract). http://www.researchgate.net/publication/313564266_Formation_of_non-tectonic_fractures_in_mudstones_in_Gulong_Depression
      [4] Guo, X., Wu, Y., 2007. Influence of Start-up Pressure Gradient and Stress Sensitivity on Productivity of Low-Permeability Gas Reservoirs. Oil & Gas Geology, 28(4): 539-543(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200704022.htm
      [5] Jarvie, D.M., 2008. Unconventional Shale Resource Plays: Shale-Gas and Shale-Oil Opportunities. Fort Worth Business Press Meeting, Fort Worth.
      [6] Li, C.L., 2009. Stress Sensitivity Influence on Oil Well Productivity. Journal of Southwest Petroleum University(Science & Technology Edition), 31(1): 170-172(in Chinese with English abstract). http://www.researchgate.net/publication/293257570_Stress_sensitivity_influence_on_oil_well_productivity
      [7] Lu, S.F., Huang, W.B., Chen, F.W., et al., 2012. Classification and Evaluation Criteria of Shale Oil and Gas Resources: Discussion and Application. Petroleum Exploration and Development, 39(2): 268-276. doi: 10.1016/S1876-3804(12)60042-1
      [8] Luo, C.X., 2011. Shale Oil Development may Change the Landscape in the World's Oil Market. Sino-Global Energy, 16(12): 22-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYZW201112006.htm
      [9] Ma, Y.S., Feng, J.H., Mu, Z.H., et al., 2012. The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC. Engineering Sciences, 14(6): 22-29(in Chinese with English abstract). http://www.researchgate.net/publication/303362081_The_potential_and_exploring_progress_of_unconventional_hydrocarbon_resources_in_SINOPEC
      [10] Mu, X.S., Yuan, X.R., Jia, Y.F., et al., 2003. The Formation Conditions and the Distribution Characteristics of the Oil Pools in the Fractures of the Shales in Dongpu Depression. Fault-Block Oil & Gas Field, 10(1): 12-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT200301004.htm
      [11] Pu, B.L., 2008. Analysis of the Reservoir-Forming Conditions of Shale Gas Potential in Sichuan Basin. China University of Petroleum (East China) (Disstertation), Dongying, 1-7(in Chinese).
      [12] Ross, D.J.K., Bustin, R.M., 2007. Impact of Mass Balance Calculations on Adsorption Capacities in Microporous Shale Gas Reservoirs. Fuel, 86: 2696-2706. doi: 10.1016/j.fuel.2007.02.036
      [13] Ross, D.J.K., Bustin, R.M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26: 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
      [14] Sheng, J.J., Chen, K., 2014. Evaluation of the EOR Potential of Gas and Water Injection in Shale Oil Reservoirs. Journal of Unconventional Oil and Gas Resources, 5: 1-9. doi: 10.1016/j.juogr.2013.12.001
      [15] Tran, T., Sinurat, P., Wattenbarger, R.A., 2011. Production Characteristics of the Bakken Shale Oil. SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA. doi: 10.2118/145684-MS
      [16] Wu, C.F., Wang, C., Jiang, W., 2014. Abnormal High-Pressure Formation Mechanism in Coal Reservoir of Bide-Santang Basin, Western Guizhou Province. Earth Science—Journal of China University of Geosciences, 39(1): 73-78(in Chinese with English abstract). doi: 10.3799/dqkx.2014.007
      [17] Xiang, L.H., 2008. Quantitatively Analyze the Main Controlling Factors of Mudstone Fracture in Jiyang Depression. Petroleum Geology and Recovery Efficiency, 15(5): 31-33, 37 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YQCS200805011.htm
      [18] Xu, F.G., Li, Q., Kang, R.H., et al., 2003. The Characteristics of Fractured Shale Reservoir in Zhanhua Depression. Journal of Mineralogy and Petrology, 23(1): 74-76(in Chinese with English abstract). http://www.researchgate.net/publication/279596042_The_characteristics_of_fractured_shale_reservoir_of_in_Zhanhua_depression
      [19] Xu, H.J., Fan, G.M., Kang, Z., et al., 2008. A Productivity Prediction Equation Considering Rock Permeability Stress-Sensitivity in Low-Permeability Gas Reservoirs. Natural Gas Geoscience, 19(1): 145-147(in Chinese with English abstract). http://www.cqvip.com/QK/97226X/200801/26657015.html
      [20] Yang, Y.X., He, S., He, Z.L., et al., 2014. Sealing Mechanism of Overpressured Top Seal in Well Jianshen 1 Silurian Formation of Shizhu Synclinorium. Earth Science—Journal of China University of Geosciences, 39(1): 64-72(in Chinese with English abstract). doi: 10.3799/dqkx.2014.006
      [21] Zhang, G.Y., Chen, Q.M., Liu, L.M., 1993. A Discussion on the Characteristics of Fractured Reservoir of Mudstone in Nanyang Depression and the Mechanism of Its Formation. Petroleum Exploration and Development, 20(1): 18-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK199301004.htm
      [22] Zhang, J.C., Lin, L.M., Li, Y.X., et al., 2012. Classification and Evaluation of Shale Oil. Earth Science Frontiers, 19(5): 322-331(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600421
      [23] Zou, C.N., Yang, Z, Cui, J.W., et al., 2013. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1): 14-26(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380413600026
      [24] 陈祥, 王敏, 严永新, 等, 2011. 泌阳凹陷陆相页岩油气成藏条件. 石油与天然气地质, 32(4): 568-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104013.htm
      [25] 丁文龙, 张博闻, 李泰明, 2003. 古龙凹陷泥岩非构造裂缝的形成. 石油与天然气地质, 24(1): 50-54. doi: 10.3321/j.issn:0253-9985.2003.01.012
      [26] 郭肖, 伍勇, 2007. 启动压力梯度和应力敏感效应对低渗透气藏水平井产能的影响. 石油与天然气地质, 28(4): 539-543. doi: 10.3321/j.issn:0253-9985.2007.04.017
      [27] 李传亮, 2009. 应力敏感对油井产能的影响. 西南石油大学学报(自然科学版), 31(1): 170-172. doi: 10.3863/j.issn.1674-5086.2009.01.041
      [28] 罗承先, 2011. 页岩油开发可能改变世界石油形势. 中外能源, 16(12): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201112006.htm
      [29] 马永生, 冯建辉, 牟泽辉, 等, 2012. 中国石化非常规油气资源潜力及勘探进展. 中国工程科学, 14(6): 22-29. doi: 10.3969/j.issn.1009-1742.2012.06.004
      [30] 慕小水, 苑晓荣, 贾贻芳, 等, 2003. 东濮凹陷泥岩裂缝油气藏形成条件及分布特点. 断块油气田, 10(1): 12-14. doi: 10.3969/j.issn.1005-8907.2003.01.004
      [31] 蒲泊伶, 2008. 四川盆地页岩气成藏条件分析(学位论文). 东营: 中国石油大学(华东), 1-7.
      [32] 吴财芳, 王聪, 姜玮, 2014. 黔西比德-三塘盆地煤储层异常高压形成机制. 地球科学——中国地质大学学报, 39(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201401008.htm
      [33] 向立宏, 2008. 济阳坳陷泥岩裂缝主控因素定量分析. 油气地质与采收率, 15(5): 31-33, 37. doi: 10.3969/j.issn.1009-9603.2008.05.009
      [34] 徐福刚, 李琦, 康仁华, 等, 2003. 沾化凹陷泥岩裂缝油气藏研究. 矿物岩石, 23(1): 74-76. doi: 10.3969/j.issn.1001-6872.2003.01.015
      [35] 胥洪俊, 范明国, 康征, 等, 2008. 考虑渗透率应力敏感的低渗气藏产能预测公式. 天然气地球科学, 19(1): 145-147. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200801035.htm
      [36] 杨兴业, 何生, 何治亮, 等, 2014. 石柱地区建深1井志留系超压顶封层的封闭机制. 地球科学——中国地质大学学报, 39(1): 64-72. doi: 10.3799/dqkx.2014.006
      [37] 张光亚, 陈全茂, 刘来民, 1993. 南阳凹陷泥岩裂缝油气藏特征及其形成机制探讨. 石油勘探与开发, 20(1): 18-26. doi: 10.3321/j.issn:1000-0747.1993.01.016
      [38] 张金川, 林腊梅, 李玉喜, 等, 2012. 页岩油分类与评价. 地学前缘, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm
      [39] 邹才能, 杨智, 崔景伟, 等, 2013. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  3919
    • HTML全文浏览量:  214
    • PDF下载量:  520
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-11-20
    • 刊出日期:  2014-07-15

    目录

      /

      返回文章
      返回