Dynamic Process of Hydrocarbon Accumulation in Low-Exploration Basins: A Case Study of Xihu Depression
-
摘要: 基于地质类比方法,综合运用地质、地球物理、地球化学等资料及盆地模拟技术恢复了西湖凹陷中部地区油气成藏动力学过程.结果表明:研究区内沉积充填和构造沉降具有幕式演化特征,并以始新世地层沉积厚度最大、沉积-沉降速率最高;烃源岩有机质热演化具有成熟时间短、生油窗窄、生气窗宽的特点;主力烃源岩平湖组进入成熟生烃门限的时间早,生排烃能力强,且生排烃过程发生在晚渐新世至早-中中新世期间;研究区油气运移和油气聚集主要受控于古构造面,保俶斜坡带和天屏断裂陡坡带以平行流为主,中央背斜带以汇聚流为主,存在多个有利油气聚集区,油气聚集作用主要发生在龙井运动(7 Ma)以来.Abstract: This paper re-constructs and analyzes dynamic process of hydrocarbon accumulation in the central part of Xihu depression by using the geological data, geophysical and geochemical techniques of basin modeling in accordance with geological comparison principles. It is found that the depositional filling and tectonic subsidence experienced episodic evolution in study area with its sedimentation thickness and subsidence rate reaching the biggest value in Eocene. The organic matter evolution of source rock is characterized by short maturation, narrow zone of oil generation and broad zone of gas generation. The main source rock of Pinghu Formation reached oil threshold earlier with strong hydrocarbon generation-expulsion capacity, and the generation-expulsion process occurred in early Late Oligocene and Early-Miocene to Mid-Miocene. The petroleum migration and accumulation are controlled by the paleo-structure surface, and the confluence flowing mainly occurs in the Baochu gentle slope zone and Tianping fault steep slope zone while the planar flowing occurs in the central anticline belt. There are several favorable zones of petroleum accumulation in the study area, and the major accumulation of oil and gas occurred over the Longjing movement (7 Ma).
-
表 1 西湖凹陷地震相特征及发育情况
Table 1. The characteristics and development of seismic facies in Xihu depression
地震相 地震亚相 沉积相 空间分布 前积结构 前积、强-中-中弱振幅、低-中频、较连续-连续反射 扇三角洲、辫状河三角洲、三角洲前缘 保俶斜坡带和天屏断裂带,N1ll、N1y、N1lj、E3h、E2p层位 平行亚平行结构 平行亚平行、强-中强振幅、低频、连续反射 滨浅湖-半深湖相 中央背斜带,E3h层位 平行亚平行、强-中振幅、低-中频,较连续-连续反射 潮间-潮下带、浅湖-半深湖、河流-平原相 三潭深凹、中央背斜带、白堤深凹,E3h、E2p层位 平行亚平行、中强-中振幅、中-高频、较连续-连续反射 海湾相 中央背斜带,E2p层位 平行亚平行、中强-中振幅、中频,断续-较连续-连续反射 潮间带、滨浅湖、河流-平原相 三潭深凹,E3h、E2p层位 平行亚平行、中强-中振幅、高-中频、断续-较连续-连续反射 滨浅湖、河流-平原相 区域性见于N1ll、N1y、N1lj、E3h层位 平行亚平行、中强-中-中弱振幅、中-高频、断续-较连续-连续反射 河流-平原相 保俶斜坡带和天屏断裂带,N1ll、N1y、N1lj、E3h、E2p层位 平行亚平行、强-中振幅、断续-较连续反射 河流-平原相 保俶斜坡带和天屏断裂带,N1ll、N1y、N1lj、E3h、E2p层位 平行亚平行、中-中弱振幅、中-低频、断续-较连续反射 河流-平原相 保俶斜坡带和天屏断裂带,N1ll、N1y、N1lj、E3h、E2p层位 丘状结构 丘状、中强-中弱振幅、中频、断续-较连续反射 三角洲沉积 保俶斜坡带,E3h、E2p层位 透镜状结构 透镜状、中-弱振幅、中-低频、断续发射 河道充填沉积 保俶斜坡带,E3h层位 表 2 研究区周边单井不同层位不同相带的岩性、烃源岩属性统计
Table 2. The lithologic and hydrocarbon source rocks statistics table of different layers and phase belts of a single well arround the study area
地层 单井相 岩性 烃源岩属性 泥岩含量(%) 粉砂含量(%) 砂岩含量(%) 煤层(%) 岩性参考单井 TOC(%)平均值 HI(mg/g)平均值 干酪根类型 Qd 浅海相 53.0 38.1 8.9 / Xh14 0.30 33 Ⅲ 浅海相 34.1 60.8 5.1 / Xh4 0.27 30 Ⅲ N2s 滨浅海 42.3 41.2 15.9 0.6 Xh14 0.52 55 Ⅲ 滨浅海 37.5 36.6 25.6 0.3 Xh4 0.47 49 Ⅲ N1ll 河流相 55.0 34.0 11.0 / Xh4 0.22 53 Ⅲ 滨浅湖 79.5 8.1 9.9 2.5 Xh14 0.46 61 Ⅲ N1y 河流相 48.2 38.2 12.9 0.8 Xh4 0.42 78 Ⅲ 滨浅湖 70.5 10.9 14.7 3.8 Xh14 0.85 110 Ⅲ N1lj 河流相 21.2 44.9 33.9 / Xh3 0.43 88 Ⅲ 三角洲前缘 56.7 29.8 13.5 / Xh14 0.75 143 Ⅲ E3h2 三角洲前缘 77.0 19.9 3.1 / Xh3 0.57 123 Ⅲ 滨浅湖 49.2 26.7 23.2 0.9 Xh12 0.66 179 Ⅲ-Ⅱ2 E3h1 河流平原相 25.9 44.8 29.3 / Xh3 0.44 144 Ⅲ 三角洲前缘 51.6 12.1 35.1 1.2 Xh12 0.97 127 Ⅲ 前三角洲 81.1 10.8 8.1 / Xh16 0.77 135 Ⅲ 滨浅湖 81.7 11.0 7.3 / Xh6 0.85 172 Ⅲ-Ⅱ2 E2p3 三角洲前缘 57.2 16.6 24.0 2.2 Xh3 1.21 192 Ⅲ-Ⅱ2 潮间带 68.9 13.3 11.1 6.7 Xh5 1.15 202 Ⅲ-Ⅱ2 潮下带 71.8 14.4 8.4 5.5 Xh12 1.21 233 Ⅲ-Ⅱ2 E2p2 海岸平原 73.6 7.6 7.9 10.9 Xh3 0.52 140 Ⅲ 三角洲前缘 65.1 9.3 20.9 4.7 Xh3 1.16 187 Ⅲ-Ⅱ2 潮间带 68.4 13.2 10.5 7.9 Xh5 1.04 191 Ⅲ-Ⅱ2 海湾相 76.4 9.1 10.9 3.6 Xh18 1.32 245 Ⅲ-Ⅱ2 E2p1 潮间带 76.1 10.6 8.3 5.0 Xh7 0.96 236 Ⅲ-Ⅱ2 潮下带 74.3 4.7 12.3 8.7 Xh3 0.89 248 Ⅲ-Ⅱ2 海湾相 86.2 8.5 3.1 2.3 Xh17 1.42 275 Ⅲ-Ⅱ2 表 3 油气成藏动力学过程模拟中采用的主要模型与方法
Table 3. The models and methods used in dynamic simulation of petroleum reservoirs
系统模块 本次研究选用的方法 构造沉降史 Airy均衡模型 地层埋藏史 压实模型 联合流体流动压实方法 渗透率模型 Modified Kozeny-Carman 生烃史 有机质成熟度史 LLNL:Easy Ro法 生烃量史 化学动力学法 排烃史 Ro:排烃率法 运移聚集史 古流体势恢复流线法 -
[1] Cao, Q., Ye, J.R., Shi, W.Z., et al., 2009. Preliminary Prediction and Evaluation of Source Rocks in Low-Exploration Basins: A Case Study on the Northeast Sag of the Northern South Yellow Sea Basin in China. Acta Petrolei Sinica, 30(4): 522-529(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZDDY200905007.htm [2] Fu, N., Li, Y.C., Chen, G.H., et al., 2003. Pooling Mechanisms of "Evaporating Fractionation" of Oil and Gas in the Xihu Depression, East China Sea. Petroleum Exploration and Development, 30(2): 39-42(in Chinese with English abstract). http://www.researchgate.net/publication/288926001_Pooling_mechanisms_of_evaporating_fractionation_of_oil_and_gas_in_the_Xihu_Depression_East_China_Sea [3] Guo, J.Y., Zhang, D.L., Deng, H.W., et al., 2006. Resource Assessment Methodology of Oil and Gas in the Areas of Low-Degree Prospecting. Petroleum Geology and Recovery Efficiency, 13(6): 43-45(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YQCS200606013.htm [4] Guo, X.W., He, S., Hou, Y, G., 2010. Numerical Simulation of Petroleum Generation, Migration and Accumulation of the Es3 Formation in Banqiao Depression. Earth Science——Journal of China University of Geosciences, 35(1): 115-124(in Chinese with English abstract). doi: 10.3799/dqkx.2010.012 [5] He, J.X., Xia, B., Shi, X.B., et al., 2006. Prospect and Progress for Oil and Gas in Deep Waters of the World, and the Potential and Prospect Foreground for Oil and Gas in Deep Waters of the South China Sea. Natural Gas Geoscience, 17(6): 747-752, 806 (in Chinese with English abstract). [6] Hermans, l., van Kuyk, A.D., Lehner, F.K., et al., 1992. Modeling Secondary Hydrocarbon Migration on Haltenbanken, Norway, In: Larsen, R.M., Brekke, H., Larsen, B.J., eds., Structural and Tectonic Modeling and Its Applications to Petroleum Geology. Norwegian Petroleum Society(Special Publication), 1: 305-323. [7] Hindle, A.D., 1997. Petroleum Migration Pathways and Charge Concentration: A Three-Dimensional Model. AAPG Bulletin, 81(9): 1451-1481. http://aapgbull.geoscienceworld.org/content/81/9/1451 [8] Hu, F., Ye. J.R., Liu, J.H., 2003. Characteristics of Oil and Gas Migration and Accumulation in the Pinghu Structural Belt, Xihu Depression, East China Sea. Marine Geology & Quaternary Geology, 23(1): 95-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200301015.htm [9] Jiang, L., 2003. Exploration Status and Perspective of Petroleum Resources in East China Sea Shelf Basin. China Offshore Oil and Gas(Geology), 17(1): 1-5(in Chinese with English abstract). http://www.researchgate.net/publication/285312375_Exploration_status_and_perspective_of_petroleum_resources_in_East_China_Sea_Shelf_Basin [10] Jin, Q.H., 2006. Petroleum in Deep Water is Major Prospecting Hotspot Nowadays. Scientific Chinese, 11: 18-20 (in Chinese). [11] Kang, A., Zhu. X.M., Wang, G.W., et al., 2000. Application of Paleobathymetric Curve in the Sequence Stratigraphy of Well-Logging Data. Acta Sedimentologica Sinica, 18(1): 63-67(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200001010.htm [12] Keym, M., Dieckmann, V., Horsfield, B., et al., 2006. Source Rock Heterogeneity of the Upper Jurassic Draupne Formation, North Viking Graben, and Its Relevance to Petroleum Generation Studies. Organic Geochemistry, 37(2): 220-243. doi: 10.1016/j.orggeochem.2005.08.023 [13] Lerche, I., 1992. Oil Exploration: Basin Analysis and Economics. Academic Press Inc, San Diego. [14] Li, S.F., Xu, S.H., Shi, H.S., et al., 2013. Characteristics of Paleogene Source Rocks and Prediction of Petroleum Resources in Huizhou Depression, Pearl River Mouth Basin. Earth Science—Journal of China University of Geosciences, 38(1): 112-120(in Chinese with English abstract). doi: 10.3799/dqkx.2013.011 [15] Mckenzie, D., 1978. Some Remarks on the Development of Sedimentary Basin. Earth and Planetary Science Letters, 40(1): 25-32. doi: 10.1016/0012-821X(78)90071-7 [16] Peters, K.E., Magoon, L.B., Bird, K.J., et al., 2006. North Slope, Alaska: Source Rock Distribution, Richness, Thermal Maturity, and Petroleum Charge. AAPG bulletin, 90(2): 261-292. doi: 10.1306/09210505095 [17] Qiao, Y.F., Mao, X.P., Xin, G.Z., 2005. Quantitative Simulation of Hydrocarbon Migration. Earth Science——Journal of China University of Geoscineces, 30(5): 617-622(in Chinese with English abstract). http://www.researchgate.net/publication/287637594_Quantitative_simulation_of_hydrocarbon_migration [18] Qin, J.Z., Zheng, L.J., Teng, G.E., 2007. Study on the Restitution Coefficient of Original Total Organic Carbon for High Mature Hydrocarbon Source Rocks. Earth Science—Journal of China University of Geosciences, 32(6): 853-860(in Chinese with English abstract). doi: 10.1007/s11707-007-0059-5 [19] Shi. G.R., 2004. Numerical Methods of Petroliferous Basin Modeling. Petroleum Industry Press, Beijing, 10-12 (in Chinese). [20] Shi, X., Dai, J.X., Zhao, W.Z., 2005. Analysis of Deep Oil and Gas Reservoirs Exploration Prospect. China Petroleum Exploration, 10(1): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY200501000.htm [21] Thomsen, R.O., 1998. Aspects of Applied Basin Modeling: Sensitivity Analysis and Scientific Risk. Geological Sociely, London, Special Publications, 141: 209-221. doi: 10.1044/GSL.SP.1998.141.01.13 [22] Wan, T., Jiang, Y.L., Dong, Y.X., et al., 2013. Reconstructed and Traced Pathways of Hydrocarbon Migration in Nanpu Depression, Bohai Bay Basin. Earth Science—Journal of China University of Geosciences, 38(1): 173-180(in Chinese with English abstract). doi: 10.3799/dqkx.2013.017 [23] Wang, C., Yan, J., Wang, L.S., 2008. Feature of Pool-Forming Dynamics and Mechanism in Central and Southern Part of Xihu Depression. Offshore Oil, 28(4): 1-5(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYSY200804000.htm [24] Wang, Y.M., Qian, Y.Z., Deng, L., et al., 1998. The Study Methods about Dynamic Petroleum Accumulation Progress of Residual Basins. Journal of Chengdu University of Technology, 25(3): 385-393(in Chinese with English abstract). http://www.researchgate.net/publication/295982854_The_study_methods_about_dynamic_petroleum_accumulation_progress_of_residual_basins [25] Wang, Z., Zhang, M.L., Wang, Z.Y., et al., 2005. Erosion Thickness Restoration of Unconformaties in the Xihu Sag, the Shelf Basin of East China Sea. Petroleum Geology & Experiment, 27(1): 90-93(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD20050100F.htm [26] Wang, Z.Y., Zhang, M.L., 2005. Erosion Restoration of the Major Cenozoic Unconformities in the Xihu Depression of the East China Sea. Geological Review, 51(3): 309-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200503013.htm [27] Ye, J.R., Chen, H.H., Chen, J.Y., et al., 2006. Fluid History Analysis in the Xihu Depression, East China Sea. Natural Gas Industry, 26(9): 40-43(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200609012.htm [28] Yilmaz, O., 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysics, Tulsa. [29] Zhang, G.C., Mi, L.J., Wu, S.G., et al., 2007. Deepwater Area—The New Prospecting Targets of Northern Continental Margin of South China Sea. Acta Petrolei Sinica, 28(2): 15-21(in Chinese with English abstract). http://www.researchgate.net/publication/279551230_Deepwater_area_-_The_new_prospecting_targets_of_northern_continental_margin_of_South_China_Sea [30] Zhang, S.Q., Ren, Y.G., 2003. The Study of Base Level Changes of the Songliao Basin in Mesozoic. Journal of Chang'an University (Earth Science Edition), 25(2): 1-5(in Chinese with English abstract). http://www.researchgate.net/publication/284514623_The_study_of_base_level_changes_of_the_Songliao_Basin_in_Mesozoic [31] Zhang, Z.M., Wu, N.Q., Zhou, J., 2005. Hydrocarbon Accumulation Mode in the Central Anticlinal Zone of Xihu Depression, Donghai Basin. Natural Gas Industry, 25(10): 8-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200510002.htm [32] Zhao, L.Q., 2011. Analysis on Hydrocarbon Source and Influence on Reservoir Formation, Pinghu Area, Xihu Depression. Petroleum Geology and Recovery Efficiency, 18(1): 26-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS201101007.htm [33] Zhao, Z.Z., Zhao, X.Z., He, H.Q., 2002. PetroChina's Recent Oil and Gas Exploration Results in New Area and Prospect for Future Development. China Petroleum Exploration, 7(3): 1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY200203000.htm [34] 曹强, 叶加仁, 石万忠, 等, 2009. 低勘探程度盆地烃源岩早期评价——以南黄海北部盆地东北凹为例. 石油学报, 30(4): 522-529. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200904009.htm [35] 傅宁, 李友川, 陈桂华, 等, 2003. 东海西湖凹陷油气"蒸发分馏"成藏机制. 石油勘探与开发, 2003, 30(2): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200302012.htm [36] 郭建宇, 张大林, 邓宏文, 等, 2006. 低勘探程度区域油气资源评价方法. 油气地质与采收率, 13(6): 43-45. doi: 10.3969/j.issn.1009-9603.2006.06.013 [37] 郭小文, 何生, 侯宇光, 2010. 板桥凹陷沙三段油气生成、运移和聚集数值模拟. 地球科学——中国地质大学学报, 35(1): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001015.htm [38] 何家雄, 夏斌, 施小斌, 等, 2006. 世界深水油气勘探进展与南海深水油气勘探前景. 天然气地球科学, 17(6): 747-752, 806. doi: 10.3969/j.issn.1672-1926.2006.06.002 [39] 胡芬, 叶加仁, 刘俊海, 2003. 东海西湖凹陷平湖构造带油气运聚特征. 海洋地质与第四纪地质, 23(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200301015.htm [40] 姜亮, 2003. 东海陆架盆地油气资源勘探现状及含油气远景. 中国海上油气(地质), 17(1): 1-5. doi: 10.3969/j.issn.1673-1506.2003.01.001 [41] 金庆焕, 2006. 深水油气是当今海洋油气勘探的主要热点. 科学中国人, 11: 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KXZG200611004.htm [42] 康安, 朱筱敏, 王贵文, 等, 2000. 古水深曲线在测井资料层序地层分析中的应用. 沉积学报, 18(1): 63-67. doi: 10.3969/j.issn.1000-0550.2000.01.011 [43] 李松峰, 徐思煌, 施和生, 等, 2013. 珠江口盆地惠州凹陷古近系烃原岩特征及资源预测. 地球科学——中国地质大学学报, 38(1): 112-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301015.htm [44] 乔永富, 毛小平, 辛广柱, 2005. 油气运移聚集定量化模拟. 地球科学——中国地质大学学报, 30(5): 617-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505014.htm [45] 秦建中, 郑伦举, 腾格尔, 2007. 海相高演化烃原岩总有机碳恢复系数研究. 地球科学——中国地质大学学报, 32(6): 853-860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706017.htm [46] 石广仁, 2004. 油气盆地模拟数值方法. 北京: 石油工业出版社, 10-12. [47] 石昕, 戴金星, 赵文智, 2005. 深层油气藏勘探前景分析. 中国石油勘探, 10(1): 1-10. doi: 10.3969/j.issn.1672-7703.2005.01.001 [48] 万涛, 蒋有录, 董月霞, 等, 2013. 渤海湾盆地南堡凹陷油气运移路径模拟及示踪. 地球科学——中国地质大学学报, 38(1): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301022.htm [49] 王闯, 闫洁, 王丽顺, 2008. 西湖凹陷中南部油气成藏动力学特征及成藏机理. 海洋石油, 28(4): 1-5. doi: 10.3969/j.issn.1008-2336.2008.04.001 [50] 王英民, 钱奕中, 邓林, 等, 1998. 残余盆地成藏动力学过程研究方法. 成都理工学院学报, 25(3): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG803.004.htm [51] 王震, 张明利, 王子煜, 等, 2005. 东海陆架盆地西湖凹陷不整合面剥蚀厚度恢复. 石油实验地质, 27(1): 90-93. doi: 10.3969/j.issn.1001-6112.2005.01.016 [52] 王子煜, 张明利, 2005. 东海西湖凹陷新生界主要不整合面地层剥蚀厚度恢复. 地质评论, 51(3): 309-318. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200503013.htm [53] 叶加仁, 陈海红, 陈景阳, 等, 2006. 东海西湖凹陷成藏流体历史分析. 天然气工业, 26(9): 40-43. doi: 10.3321/j.issn:1000-0976.2006.09.012 [54] 张功成, 米立军, 吴时国, 等, 2007. 深水区——南海北部大陆边缘盆地油气勘探新领域. 石油学报, 28(2): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200702002.htm [55] 张世奇, 任延广, 2003. 松辽盆地中生代沉积基准面变化研究. 长安大学学报(地球科学版), 25(2): 1-5. doi: 10.3969/j.issn.1672-6561.2003.02.001 [56] 张忠民, 吴乃芩, 周瑾, 2005. 东海西湖凹陷中央背斜带油气成藏模式研究. 天然气工业, 25(10): 8-10. doi: 10.3321/j.issn:1000-0976.2005.10.003 [57] 赵兰全, 2011. 西湖凹陷平湖地区油气源分析及其对成藏的影响. 油气地质与采收率, 18(1): 26-29. doi: 10.3969/j.issn.1009-9603.2011.01.008 [58] 赵政璋, 赵贤正, 何海清, 2002. 中国石油近期新区油气勘探成果及面临的挑战与前景展望. 中国石油勘探, 7(3): 1-6. doi: 10.3969/j.issn.1672-7703.2002.03.001