Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range: Implications for Ore Genesis
-
摘要: 岔路口超大型斑岩型钼矿床位于大兴安岭北段,以网脉状和角砾岩型矿化为主.该矿床经历了4个成矿阶段:Ⅰ.石英-钾长石;Ⅱ.石英-辉钼矿;Ⅲ.石英-多金属硫化物;Ⅳ.石英-萤石-方解石.包裹体的岩相学及激光拉曼研究揭示,石英斑晶内的熔体-流体包裹体中熔体成分有更长石和钠长石,为岩浆出溶作用形成;子矿物多相包裹体(S型)中含有钾盐、石盐、赤铁矿和石膏等子矿物,显示出成矿流体为高氧逸度.第Ⅰ成矿阶段包裹体有气液两相(L+V型)、富CO2三相(C型)和含石盐、钾盐、赤铁矿及硬石膏等子矿物的多相(S型)等类型,第Ⅱ成矿阶段除了有L+V型、C型以及含钾盐、石盐、黄铜矿和辉钼矿等子矿物多相(S型)外,还可以见到S型包裹体与气相包裹体(V型)共存;第Ⅲ成矿阶段以L+V型和含方解石的S型包裹体为主;第Ⅳ成矿阶段除见到L+V型包裹体外,还可以见到液相包裹体(L型).显微测温结果显示从早到晚,流体包裹体均一温度从530 ℃变为120 ℃、盐度从66.7% NaCl equiv变为1.2% NaCl equiv,呈现逐渐降低的趋势.群体包裹体成分显示各阶段均含有气相CO2,液相成分中Na+,K+,Ca2+,SO42-,Cl-含量很高,而F-含量极少.成矿流体总体属于富含CO2的高盐度、高氧逸度的NaCl-H2O-CO2体系,在流体演化过程中温度、氧逸度、盐度和CO2含量逐渐降低.温度、盐度、CO2含量逐渐降低及绢云母化影响了矿石沉淀.Abstract: The Chalukou Mo deposit lies in the northern Great Xing'an Range, in which veinlet and breccia dominate mineralization. The whole hydrothermal ore-forming processes involve the following four stages: I. quartz-potash feldspar stage; II. quartz-molybdenite stage; III. quartz-polymetallic sulfide stage; IV. quartz-fluorite-calcite stage. The petrographic and laser Raman spectroscopy study show that the melt-fluid inclusions in quartz phenocryst contain component of oligoclase and albite, indicating they directly exsolved from primary magma. Halite, sylvite, hematite, and gypsum are recognized as daughter minerals in S-type inclusions of granite porphyry, suggesting high oxygen fugacity. The stageⅠquartz captures (L+V)-type, C-type, and S-type (contain halite, sylvite, hematite, and anhydrite daughter minerals) fluid inclusions. The stage Ⅱ quartz captures (L+V)-type, C-type, and S-type (contain halite, sylvite, chalcopyrite, and molybdenite daughter minerals) fluid inclusions, in addition, V-type and S-type fluid inclusions are coexistent. In the stage III, there are (L+V)-type and S-type with calcite as daughter minerals. Stage IV develops (L+V)-type and L-type fluid inclusions. Microthermometric data show the homogenization temperatures (530 ℃→120 ℃) and salinities (66.7% NaCl equiv→1.2% NaCl equiv) decrease gradually. The gas components have a certain amount of CO2 in every stage, and the liquid components in fluid inclusions have Na+, K+, Ca2+, Cl-, and SO42-, and small amount of F-. The initial fluids are high oxygen fugacity and salinity NaCl-H2O-CO2 fluid system with abundant CO2. The homogenization temperatures, salinities, lgfO2, and CO2 content tend to fall from the early to late stage. The decline of homogenization temperatures, salinities, and CO2 content as well as sericitization greatly hinder the depositing of metallogenic elements.
-
Key words:
- ore-forming fluid /
- fluid inclusion /
- porphyry molybdenum deposit /
- Chalukou /
- geochemistry
-
图 1 大兴安岭北段区域地质简图(a)及大地构造位置(b)
1.第四系;2.光华组;3.大网子组;4.吉祥沟组;5.粗安岩;6.碱长花岗岩;7.花岗斑岩;8.中粒花岗闪长岩;9.二长花岗岩;10.花岗闪长岩;11.不整合接触;12.断层及代号;13.推测火山机构;14.矿床;15.矿化点;F1.额尔古纳断裂;F2.得尔布干深断裂;F3.大兴安岭主脊-林西深断裂;F4.头道桥-鄂伦春深断裂;F5.查干敖包-五叉沟深断裂;F6.贺根山-新开岭深断裂;F7.嫩江-林西深断裂;Fg.多布库尔河大断裂;Fg1.多布库尔河次级断裂
Fig. 1. Tectonic location map(a) and regional geological map (b) of the northern great Xing'an range
图 6 岔路口矿床成矿阶段均一温度-盐度关系(据Wilkinson, 2001)
Fig. 6. Homogenization temperature-salinity diagram between different stages in the Chalukou Porphyry Mo deposit
表 1 岔路口钼矿床的流体包裹体特征及显微测温结果
Table 1. The characteristics of fluid inclusions and microthermal measurement in Chalukou Porphyry deposit
包裹体类型 形态和大小 冰点(℃) CO2笼形化合物熔化温度(℃) CO2部分均一温度(℃) 完全均一温度(℃) 子晶熔化温度(℃) 盐度(% NaCl equiv) 分布情况及特征 M型 熔体-流体包裹体 不规则和负晶型为主一般8~15 μm 升至500 ℃测均一温度,熔体-流体包裹体无显著变化 在花岗斑岩的石英斑晶中较为发育,包裹体中可见到明显的熔体相存在,无晶形,但其消光位与主矿物石英存在差异 V型 气相包裹体 负晶型、椭圆形为主,大小一般小于10 μm -8.9~-1.2 302~530 2.1~12.7 在石英斑晶中及第Ⅱ成矿阶段出现较多 L+V型 富气相的气液两相包裹体 不规则和负晶型为主,一般3~15 μm -8.9~-1.2 302~530 2.1~12.7 最主要的包裹体类型,第Ⅰ、Ⅱ、Ⅲ和Ⅳ阶段均有分布,主要呈群状、带状或线状产出,少数呈孤立状产出 富气相的气液两相包裹体 椭圆形、不规则和负晶型为主,一般4~20 μm -13.1~-0.3 121~474 0.5~17.0 L型 液相包裹体 椭圆形、圆形为主大小一般小于10 μm -13.1~-0.3 121~474 0.5~17.0 在第Ⅳ阶段该类包裹体呈线状或带状产出,一般为次生包裹体 C型 含CO2三相包裹体 圆形、椭圆形和不规则形为主,气相CO2位于中央,外侧依次是液相CO2、液相H2O,大小一般6~20 μm 0.9~9.2 15.6~30.8 254~470 1.6~14.5 该类型包裹体第Ⅰ和Ⅱ成矿阶段较为常见,往往呈孤立状产出,少数群状、线状出现 含CO2两相包裹体 负晶型为主,存在液相CO2和气相CO2,一般4~12 μm 28.1~30.1 S型 含子矿物多相包裹体 椭圆和不规则为主,一般子矿物数量为1~2个,少数3~4个,大小通常为6~22 μm 324~551 324~551 39.8~66.7 第Ⅰ阶段有含石盐、钾盐、赤铁矿和硬石膏的S型包裹体 292~466 292~466 37.4~55.8 第Ⅱ阶段有含石盐、黄铜矿和辉钼矿的S型包裹体 -2.7~-1.8 253~316 3.0~4.5 第Ⅲ阶段可见含方解石的S型包裹体 第Ⅳ阶段未见S型包裹体 表 2 包裹体激光拉曼测试结果
Table 2. Raman spectra of fluid inclusions
主矿物(阶段) 包裹体类型 测试对象 成分(个数) 拉曼特征峰值(cm-1) 石英斑晶 L+V型包裹体 气相 CO2(10) 1 387, 1 283.9 L+V型包裹体 液相 水(10) 3 440 S型包裹体 子矿物 石膏(4) 1 008 C型包裹体 气相 CO2(2) 1 385, 1 281 熔体-流体包裹体 熔体 钠长石(2) 506.9, 479.2 熔体-流体包裹体 熔体 更长石(3) 508.8, 477.6 石英(Ⅰ) L+V型包裹体 液相 水(8) 3 465 C型包裹体 气相 CO2(8) 1 388.8, 1 285.8 S型包裹体 子矿物 赤铁矿(7) 1 311.1, 408 S型包裹体 子矿物 硬石膏 1 015.9, 1 127.5, 674.7 石英(Ⅱ) L+V型包裹体 气相 CO2(5) 1 388.8, 1 285.8 S型包裹体 子矿物 黄铜矿(2) 291.1, 349.3 S型包裹体 子矿物 辉钼矿(3) 408.8, 464.9 石英(Ⅲ) C型包裹体 气相 CO2(3) 1 387, 1 283 L+V型包裹体 液相 水(8) 3 443 S型包裹体 子矿物 方解石(4) 1 086.19 石英(Ⅳ) L+V型包裹体 液相 水(6) 3 441 表 3 岔路口矿床流体包裹体(群体)气相成分特征摩尔分数(%)
Table 3. Gaseous composition of mass fluid inclusions of the Sawayardun deposit
样品 矿物成矿阶段 CH4 C2H2+C2H4 C2H6 CO2 H2O O2 N2 CO CO2/CH4 H2O/CO2 1606-2 石英(I) 0.01 0.01 b.d. 12.36 66.45 2.84 18.33 b.d. 1236.00 5.38 1114-2 石英(I) 0.03 b.d. b.d. 9.76 70.65 2.89 16.67 b.d. 325.33 7.24 1606-1 石英(I) 0.01 b.d. b.d. 6.66 71.45 3.22 18.50 0.60 666.00 10.73 1102-6 石英(П) 0.01 b.d. b.d. 8.64 55.95 5.34 29.85 0.53 864.00 6.48 1102-9 石英(П) 0.01 b.d. b.d. 8.37 81.95 1.18 8.33 0.74 837.00 9.79 DB-14 石英(Ш) 0.01 b.d. b.d. 7.97 70.67 3.12 18.23 b.d. 797.00 8.87 DB-12 石英(Ш) 0.01 b.d. b.d. 10.71 59.98 4.31 24.99 b.d. 1071.00 5.60 注: “b.d.”表示低于检测限; 单位为摩尔百分含量. 表 4 岔路口矿床流体包裹体(群体)液相成分特征(10-6)
Table 4. Aqueous composition(10-6) of mass fluid inclusions of the Chalukou deposit
样品 矿物成矿阶段 Li+ Na+ K+ Mg2+ Ca2+ F- Cl- Br- NO2- NO3- SO42- ∑M+ ∑M- Na+/K+ K+/Na+ Na+/(Mg2++Ca2+) C1-/S042- F-/C1- 1606-1 石英(I) b.d. 4.76 12.87 0.57 5.82 0.34 8.27 b.d. b.d. 1.44 19.64 24.02 29.69 0.37 2.70 0.74 0.42 0.04 1114-2 石英(I) b.d. 0.83 0.55 0.63 6.76 0.25 1.22 b.d. b.d. 0.94 6.93 8.76 9.34 1.52 0.66 0.11 0.18 0.20 1606-2 石英(I) b.d. 0.81 b.d. 0.51 9.61 0.20 2.52 b.d. b.d. 1.80 4.06 10.92 8.58 0.08 0.62 0.08 1102-6 石英(Ⅱ) b.d. 1.31 1.26 0.41 13.18 0.22 8.45 b.d. b.d. 1.41 4.39 16.16 14.47 1.04 0.96 0.10 1.92 0.03 1102-9 石英(Ⅱ) b.d. 5.15 22.21 0.80 5.81 0.52 3.50 b.d. b.d. 1.19 33.73 33.97 38.94 0.23 4.31 0.78 0.10 0.15 DB-14 石英(Ⅲ) b.d. 1.77 3.81 0.29 4.22 0.21 2.84 b.d. b.d. 1.63 14.58 10.08 19.26 0.46 2.15 0.39 0.19 0.07 DB-12 石英(Ⅲ) b.d. 1.94 3.89 0.70 6.90 0.14 1.67 b.d. b.d. 1.46 8.34 13.43 11.61 0.50 2.00 0.26 0.20 0.08 注:∑M+和∑M-分别为阳离子(团)和阴离子(团);“b. d. ”表示低于检测限. -
[1] Audétat, A., Pettke, T., 2003. The Magmatic-Hydrothermal Evolution of Two Barren Granites: A Melt and Fluid Inclusion Study of the Rito Del Medio and Canada Pinabete Plutons in Northern New Mexico(USA). Geochimica et Cosmochimica Acta, 67(1): 97-121. doi: 10.1016/s0016-7037(02)01049-9 [2] Bodnar, R.J., 1994. Synthetic Fluid Inclusions: XII. The System H2O-NaCl. Experimental Determination of the Halite Liquidus and Isochors for a 40 wt% NaCl Solution. Geochimica et Cosmochimica Acta, 58: 1053-1063. doi: 10.1016/0016-7037(94)90571-1 [3] Burke, E.A.J., 2001. Raman Microspectrometry of Fluid Inclusions. Lithos, 55(1-4): 139-158. doi: 10.1016/s0024-4937(00)00043-8 [4] Chen, H.H., Wu, Y., Xiao, Q.G., 2013. Thermal Regime and Paleogeothermal Gradient Evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China. Earth Science—Journal of China University of Geosciences38(3): 541-552(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201303013.htm [5] Chen, Y.J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5): 1223-1268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201205002.htm [6] Chen, Z.G., Zhang, L.C., Wan, B., et al., 2008. Geochemistry and Geological Significances of Ore-Forming Porphyry with Low Sr and Yb Value in Wunugetushan Copper-Molybdenum Deposit, Inner Mongolia. Acta Petrologica Sinica, 24(1): 115-128 (in Chinese with English abstract). http://www.researchgate.net/publication/280020591_Geochemistry_and_geological_significances_of_ore-forming_porphyry_with_low_Sr_and_Yb_value_in_Wunugetushan_copper-molybdenum_deposit_Inner_Mongolia [7] Cline, J.S., Bodnar, R.J., 1991. Can Economic Porphyry Copper Mineralization be Generated by a Typical Calc-Alkaline Melt. Journal of Geophysical Research: Solid Earth and Planets, 96(B5): 8113-8126. doi: 10.1029/91jb00053 [8] Cline, J., Bodnar, R.J., 1994. Direct Evolution of Brine from a Crystallizing Silicic Melt at the Questa, New Mexico, Molybdenum Deposit. Economic Geology, 89(8): 1780-1802. doi: 10.2113/gsecongeo.89.8.1780 [9] Candela, P.A., 1989. Calculation of Magmatic Fluid Contributions to Porphyry-Type Ore Systems—Predicting Fluid Inclusion Chemistries. Geochemical Journal, 23(6): 295-305. doi: 10.2343/geochemj.23.295 [10] Davidson, P., Kamenetsky, V.S., 2007. Primary Aqueous Fluids in Rhyolitic Magmas: Melt Inclusion Evidence for Pre- and Post-Trapping Exsolution. Chemical Geology, 237: 372-383. doi: 10.1016/j.chemgeo.2006.07.009 [11] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1): 197-202. doi: 10.2113/gsecongeo.83.1.197 [12] He, M.C., Zhang, Z.J., 2001. The Application of Laser Raman Microspectroscopy to Study of Mineral Deposits. Rock and Mineral Analysis, 20(1): 43-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200101010.htm [13] Hu, S.X., Zhao, Y.Y., Sun, J.G., et al., 2002. Fluids and Their Sources for Gold Mineralizations in the North China Platform. Journal of Nanjing University (Natural Sciences), 38(3): 381-391 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ200203013.htm [14] Li, N., Sun. Y.L., Li. J., et al., 2007. Molybdenite Re/Os Isochron Age of the Wunugetu Shan Porphyry Cu/Mo Deposit, Inner Mongolia and Its Implication for Metallogenic Geodynamics. Acta Petrologica Sinica, 23(11): 2881-2888 (in Chinese with English abstract). http://www.oalib.com/paper/1472697 [15] Li, J.X., Li, G.M., Qin, K.Z., et al., 2011. High-Temperature Magmatic Fluid Exsolved from Magma at the Duobuza Porphyry Copper-Gold Deposit, Northern Tibet. Geofluids, 11(2): 134-143. doi: 10.1111/j.1468-8123.2011.00325.x [16] Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. The Regional Metallogeny of Da Xinganling, China. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract). http://www.researchgate.net/publication/302500005_The_regional_metallogeny_of_Da_Hinggan_Ling_China [17] Liu, J., Mao, J., W., Wu, G., et al., 2013a. Zircon U-Pb Dating for the Magmatic Rocks in the Chalukou Porphyry Mo Deposit in the Northern Great Xing'an Range, China and Its Geological Significance. Acta Geologica Sinica, 87(2) : 208-226(in Chinese with English abstract). http://www.researchgate.net/publication/303160692_Zircon_U-Pb_dating_for_the_magmatic_rocks_in_the_Chalukou_Porphyry_Mo_deposit_in_the_Northern_Great_Xing'an_Range_China_and_its_geological_significance [18] Liu, J., Wu, G., Wang, F., et al., 2013b. Fluid Inclusions and Stable Isotope Characteristics of the Chalukou Porphyry Mo Deposit in Heilongjiang Province. Geology in China, 40(4): 1231-1251 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201304022.htm [19] Liu, Y.F., Nie, F.J., Sun, Z.J., et al., 2011. Discovery of Chalukou Super Large Scale Molybdenum Polymetallic Deposit, Northern Daxing' Anlin Mountain, China, and Its Significance. Mineral Deposits, 30(4): 759-764 (in Chinese with English abstract). http://www.researchgate.net/publication/288192676_Discovery_of_Chalukou_superlarge_scale_molybdenum_polymetallic_deposit_Northern_Daxing'anlin_Mountain_China_and_its_significance [20] Lu, H.Z., 1990. On Fluid-Melt Inclusions. Geochimica, (3): 225-229 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199003003.htm [21] Lu, H.Z., 2000. High Temperature, Salintiy and High Concentrated Ore Metal Magmatic Fluids: An Example from Grasberg Cu-Au Porphyry Deposit. Acta Petrologica Sinica, 16(4): 465-472 (in Chinese with English abstract). http://www.researchgate.net/publication/279949078_High_temperature_salinity_and_high_concentrated_ore_metal_magmatic_fluids_An_example_from_Grasberg_Cu-Au_porphyry_deposit [22] Lu, H.Z., 2008. Role of CO2 Fluid in the Formation of Gold Deposits: Fluid Inclusion Evidences. Geochimica, 37(4): 321-328 (in Chinese with English abstract). [23] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusion. Science Press, Beijing, 202-229(in Chinese). [24] Nie, F.J., Sun. Z.J., Li, C., et al., 2011. Re-Os Isotopic Dating of Molybdenite Separates from Chalukou Porphyry Mo Polymetallic Deposit in Heilongjiang Province. Mineral Deposits, 30(5): 828-836 (in Chinese with English abstract). [25] Kamenetsky, V.S., Davidson, P., Mernagh, T.P., et al., 2002. Fluid Bubbles in Melt Inclusions and Pillow-Rim Glasses: High-Temperature Precursors to Hydrothermal Fluids. Chemical Geology, 183: 349-364. doi: 10.1016/s0009-2541(01)00383-7 [26] Kamenetsky, V.S., Naumov, V.B., Davidson, P., et al., 2004. Immiscibility between Silicate Magmas and Aqueous Fluids: A Melt Inclusion Pursuit into the Magmatic-Hydrothermal Transition in the Omsukchan Granite (NE Russia). Chemical Geology, 210, 73-90. doi: 10.1016/j.chemgeo.2004.06.016 [27] Klemm, L.M., Pettke, T., Heinrich, C.A., 2008. Fluid and Source Magma Evolution of the Questa Porphyry Mo Deposit, New Mexico USA. Mineralium Deposita, 43: 533-552. doi: 10.1007/s00126-008-0181-7 [28] Phillips, G.N., Evans, K, A., 2004. Role of CO2 in the Formation of Gold Deposits. Nature, 429(6994): 860-863. doi: 10.1038/nature02644 [29] Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012. Individual Oil Inclusion Composition Prediction and Its Application in Oil and Gas Accumulation Studies. Earth Science—Journal of China University of Geosciences, 37(4): 815-824 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204021.htm [30] Qin, K.Z., Li, H.M., Li, W.S., et al., 1999. Intrusion and Mineralization Ages of the Wunugetushan Porphyry Cu-Mo Deposit, Inner Mongolia, Northwestern China. Geological Review, 45(2): 180-185 (in Chinese with English abstract). [31] Roedder, E., 1972. The Composition of Fluid Inclusions. US Geological Survey Paper 440 J, U.S.A., 164. [32] Roedder, E., 1984. Fluid Inclusions: Reviews in Mineralogy, 12. Mineralogical Society of America, Washington, 646. http://www.scienceopen.com/review?vid=b5fccac8-cd59-4859-82d8-1d5f74572218 [33] Rowe, A., 2012. Ore Genesis and Fluid Evolution of the Goat Hill Orebody, Questa Climax-Type Porphyry-Mo System, NM and Its Comparison to the Climax-Type Deposits of the Colorado Mineral Belt (Dissertation). Department of Earth & Environmental Science, New Mexico Institute of Mining & Technology, Socorro, New Mexico. [34] Ulrich, T., Mavrogenes, J., 2008. An Experimental Study of the Solubility of Molybdenum in H2O and KCl-H2O Solutions from 500 ℃ to 800 ℃, and 150 to 300 MPa. Geochimica et Cosmochimica Acta, 72(9): 2316-2330. doi: 10.1016/j.gca.2008.02.014 [35] Wang, L.Y., Sun, N.R., Zhong, L.P., 2010. The Regional Geological Characteristics and Prospecting Method of the Northern Great Xing'an Range. Jilin Geology, 29(1): 36-40 (in Chinese). [36] Wang, J.P., Han, L., Lü, K.P., 2011. Geological Characteristics the Chalukou Molybdenum Polymetallic Ore Deposit, Daxing'anling. Mineral Resources and Geology, 25(6): 486-490 (in Chinese with English abstract). [37] Wei, H., Xu, J.H., Zeng, Q.D., et al., 2011. Fluid Evolution of Alteration and Mineralization at the Duobaoshan Porphyry Cu(Mo)Deposit, Heilongjiang Province. Acta Petrologica Sinica, 27(5): 1361-1374(in Chinese with English abstract). [38] Wu, X.M., Zhou, H.Y., Peng, X.T., 2007. Experimental Studies on Fluid Inclusions in Hydrothermal Anhydrite: Effects of the Formation of Gypsum. Geological Journal of China Universities, 13(4): 722-729(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200704017.htm [39] Wilkinson, J.J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1-4): 229-272. doi: 10.1016/s0024-4937(00)00047-5 [40] Xiang, A.P., Yang, Y.C., Li, G.T., et al., 2012. Diagenetic and Metallogenic Ages of Duobaoshan Porphyry Cu-Mo Deposit in Heilongjiang Province. Mineral Deposits, 31(6): 1237-1248 (in Chinese with English abstract). [41] Xie, Y.L., Xu, J.H., Yang, Z.S., et al., 2004. SEM/EDS Study of Daughter Minerals of Fluid Inclusions in Garnet and Diopside from Tongguanshan Copper Deposit. Mineral Deposits, 23(3): 375-348 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200403010.htm [42] Xiong, S.F., 2011. Ore-Forming Fluid and Metallogenic Mechanism of the Qiyugou Gold Deposit, Henan Province, China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [43] Xiong, S.F., He, M.C., Yao, S.Z., et al., 2014a. Fluid Evolution of the Chaluokou Giant Mo Deposit in the Northern Great Xing'an Range, NE China. Geological Journal. doi: 10.1002/gj.2588 [44] Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2014b. Critical-Supercritical Fluid Inclusions Characteristics and Ore-Forming Fluids Evolution of Qiyugou Gold Deposit, Henan Province. Journal of Jilin University (Earth Science Edition), 44(1): 120-133 (in Chinese with English abstract). doi: 10.13278/j.cnki.jjuese.20141110 [45] Xu, J.H., Wei, H., Wang, H.Y., et al., 2012. Sub-Volcanic Hydrothermal Mineralization of the Wulaga Gold Deposit, Heilongjiang, China: Evidences from Melt and Fluid Inclusions. Acta Petrologica Sinica, 28(4): 1305-1316 (in Chinese with English abstract). [46] Yang, Z.M., Xie, Y.L., Li, G.M., et al., 2005. Study of Fluid Inclusions from Tinggong Porphyry Copper Deposit in Gangdese Belt, Tibet. Mineral Deposits, 24(6): 584-594(in Chinese with English abstract). http://www.researchgate.net/publication/282715446_Study_of_fluid_inclusions_from_Tinggong_porphyry_copper_deposit_in_Gangdese_belt_Tibet [47] Zhu, H.P., Wang, L.J., 2000. Determining Gaseous Composition of Fluid Inclusions with Quadrupole Mass Spectrometer. Science in China (Series D), 31(7): 586-590 (in Chinese). [48] Zhang, D.H., Liu, W., 1998. Fluid Inclusion Compositions of Au Deposits and Their Ore Genesis Significance: The Discussion on the Origin of Ore-Forming Fluid of Shibangou Gold Deposit, Xixia, Henan Province. Geological Science and Technology Information, 17(Suppl.): 61-71 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ8S1.012.htm [49] Zhai, P.Q., Chen, H.H., 2013. Discharging Zones of Overpressure System in Qiongdongnan Basin, Northern South China Sea: Implications for Favorable Sites of Natural Gas Accumulation. Earth Science—Journal of China University of Geosciences, 38(4): 832-842(in Chinese with English abstract). doi: 10.3799/dqkx.2013.081 [50] 陈红汉, 吴悠, 肖秋苟, 2013. 青藏高原中-新生代沉积盆地热体制与古地温梯度演化. 地球科学——中国地质大学学报, 38(3): 541-552. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303013.htm [51] 陈志广, 张连昌, 万博, 等, 2008. 内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义. 岩石学报, 24(1): 115-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801010.htm [52] 陈衍景, 张成, 李诺, 等, 2012. 中国东北钼矿床地质. 吉林大学学报(地球科学版), 42(5): 1223-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205002.htm [53] 何谋惷, 张志坚, 2001. 显微激光拉曼光谱在矿床学中的应用. 岩矿测试, 20(1): 43-47. doi: 10.3969/j.issn.0254-5357.2001.01.011 [54] 胡受奚, 赵乙英, 孙景贵, 等, 2002. 华北地台重要金矿成矿过程中的流体作用及其来源研究. 南京大学学报(自然科学版), 38(3): 381-391. doi: 10.3321/j.issn:0469-5097.2002.03.013 [55] 李诺, 孙亚莉, 李晶, 等, 2007. 内蒙古乌努格吐山斑岩铜钼矿床辉钼矿铼锇等时线年龄及其成矿地球动力学背景. 岩石学报, 23(11): 2881-2888. doi: 10.3969/j.issn.1000-0569.2007.11.018 [56] 刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(01): 269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024 [57] 刘军, 毛景文, 武广, 等, 2013a. 大兴安岭北部岔路口斑岩钼矿床岩浆岩锆石U-Pb年龄及其地质意义. 地质学报, 87(2) : 208-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302008.htm [58] 刘军, 武广, 王峰, 等, 2013b. 黑龙江省岔路口斑岩钼矿床流体包裹体和稳定同位素特征. 中国地质, 40(4): 1231-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201304022.htm [59] 刘翼飞, 聂凤军, 孙振江, 等, 2011. 岔路口特大型钼多金属矿床的发现及其意义. 矿床地质, 30(4): 759-764. doi: 10.3969/j.issn.0258-7106.2011.04.016 [60] 卢焕章, 1990. 流体熔体包裹体. 地球化学, (3): 225-229. doi: 10.3321/j.issn:0379-1726.1990.03.004 [61] 卢焕章, 2000. 高盐度、高温和高成矿金属的岩浆成矿流体-以格拉斯伯格Cu-Au矿为例. 岩石学报, 16(4): 465-472. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004000.htm [62] 卢焕章, 2008. CO2流体与金矿化: 流体包裹体的证据. 地球化学, 37(4): 321-328. doi: 10.3321/j.issn:0379-1726.2008.04.006 [63] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社, 202-229. [64] 聂凤军, 孙振江, 李超, 等, 2011. 黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义. 矿床地质, 30(5): 828-836. doi: 10.3969/j.issn.0258-7106.2011.05.006 [65] 平宏伟, 陈红汉, 宋国奇, 等, 2012. 单个油包裹体组分预测及其在油气成藏研究中的应用. 地球科学——中国地质大学学报, 37(4): 815-824. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204021.htm [66] 秦克章, 李惠民, 李伟实, 等, 1999. 内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代. 地质论评, 45(2): 180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011 [67] 王来云, 孙念仁, 钟立平, 2010. 大兴安岭北段贵金属有色金属区域成矿地质特征及找矿方法. 吉林地质, 29(1): 36-40. doi: 10.3969/j.issn.1001-2427.2010.01.009 [68] 王建平, 韩龙, 吕克鹏, 2011. 大兴安岭岔路口钼多金属矿床地质特征. 矿产与地质, 25(6): 486-490. doi: 10.3969/j.issn.1001-5663.2011.06.009 [69] 魏浩, 徐九华, 曾庆栋, 等, 2011. 黑龙江多宝山斑岩铜(钼)矿床蚀变-矿化阶段及其流体演化. 岩石学报, 27(5): 1361-1374. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105012.htm [70] 吴雪枚, 周怀阳, 彭晓彤, 2007. 热液硬石膏流体包裹体的显微测温实验研究—石膏子晶的形成对盐度和均一温度测量的影响. 高校地质学报, 13(4): 722-729. doi: 10.3969/j.issn.1006-7493.2007.04.016 [71] 向安平, 杨郧城, 李贵涛, 等, 2012. 黑龙江多宝山斑岩Cu-Mo矿床成岩成矿时代研究. 矿床地质, 31(6): 1237-1248. doi: 10.3969/j.issn.0258-7106.2012.06.009 [72] 谢玉玲, 徐九华, 杨竹森, 等, 2004. 铜官山铜矿床矽卡岩矿物中流体包裹体及子矿物的扫描电镜研究. 矿床地质, 23(3): 375-348. doi: 10.3969/j.issn.0258-7106.2004.03.011 [73] 熊索菲, 2011. 河南嵩县祁雨沟金矿成矿流体及成矿机制研究(硕士学位论文). 武汉: 中国地质大学. [74] 熊索菲, 姚书振, 宫勇军, 等, 2014. 河南祁雨沟金矿临界―超临界包裹体特征及成矿流体演化. 吉林大学学报(地球科学版), 44(1): 120-133. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401010.htm [75] 徐九华, 魏浩, 王燕海, 等, 2012. 黑龙江乌拉嘎金矿的次火山岩浆-热液成矿: 熔体-流体包裹体证据. 岩石学报, 28(4): 1305-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204027.htm [76] 杨志明, 谢玉玲, 李光明, 等, 2005. 西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究. 矿床地质, 24(6): 584-594. doi: 10.3969/j.issn.0258-7106.2005.06.002 [77] 朱和平, 王莉娟, 2001. 四极质谱测定流体包裹体中的气相成分. 中国科学(D辑), 31(7): 586-590. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200107007.htm [78] 张德会, 刘伟, 1998. 流体包裹体成分与金矿床成矿流体来源—以河南西峡石板沟金矿床为例. 地质科技情报, 17(增刊): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S1.012.htm [79] 翟普强, 陈红汉, 2013. 琼东南盆地超压系统泄压带: 可能的天然气聚集场所. 地球科学——中国地质大学学报, 38(4): 832-842. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304017.htm