• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    微咸水膜下滴灌对土壤和棉花元素组成及产量的影响

    黄金瓯 靳孟贵 栗现文

    黄金瓯, 靳孟贵, 栗现文, 2014. 微咸水膜下滴灌对土壤和棉花元素组成及产量的影响. 地球科学, 39(6): 751-759. doi: 10.3799/dqkx.2014.070
    引用本文: 黄金瓯, 靳孟贵, 栗现文, 2014. 微咸水膜下滴灌对土壤和棉花元素组成及产量的影响. 地球科学, 39(6): 751-759. doi: 10.3799/dqkx.2014.070
    Huang Jin'ou, Jin Menggui, Li Xianwen, 2014. Influence of Mulched Drip-Irrigation with Brackish Water on Element Composition of Soil, Cotton, and Cotton Yield. Earth Science, 39(6): 751-759. doi: 10.3799/dqkx.2014.070
    Citation: Huang Jin'ou, Jin Menggui, Li Xianwen, 2014. Influence of Mulched Drip-Irrigation with Brackish Water on Element Composition of Soil, Cotton, and Cotton Yield. Earth Science, 39(6): 751-759. doi: 10.3799/dqkx.2014.070

    微咸水膜下滴灌对土壤和棉花元素组成及产量的影响

    doi: 10.3799/dqkx.2014.070
    基金项目: 

    国家自然科学基金项目 41172218

    详细信息
      作者简介:

      黄金瓯(1989-),男,博士研究生,研究方向为水文地质与生态环境以及水流与溶质运移.E-mail: hjo2012@163.com

      通讯作者:

      靳孟贵,E-mail: mgjin@cug.edu.cn

    • 中图分类号: P595, S151.9

    Influence of Mulched Drip-Irrigation with Brackish Water on Element Composition of Soil, Cotton, and Cotton Yield

    • 摘要: 通过微咸水和淡水膜下滴灌对比试验,研究灌溉水质对土壤和棉花元素组成及产量的影响.结果表明:微咸水灌溉处理,土壤窄行和膜间微量元素(尤其是铜、铁、锌)含量明显高于宽行,Na+增长率低于宽行;多数棉花器官中钾钠比、钙钠比并未因灌溉水质的区别而产生显著差异;微咸水滴灌有利于促进棉花前期营养生长及后期生殖生长,棉花干物质、单铃重、单位面积铃数及籽棉产量均高于淡水处理;棉株内锰、硼与钙元素间存在显著的相关关系,在一定阈值内,硼、锰促进棉花对钙的吸收.试验证明:微咸水中含有一定量的微量元素,合理利用微咸水灌溉,不会对棉花生长造成胁迫,相反能有效抑制土壤中Na+增长,增强棉花对盐分胁迫的抵抗能力、提高棉花产量.

       

    • 图  1  田间棉花种植及滴灌带布局

      Fig.  1.  Sketch of cottons and pipes for drip irrigation

      图  2  咸、淡水膜下滴灌土壤剖面钠元素增长率

      Fig.  2.  Growth rate of sodium in soil profile under mulched drip irrigation with brackish and fresh water

      图  3  咸、淡水膜下滴灌6种元素在土壤剖面的分布

      Fig.  3.  Distribution of six elements in soil profile under mulched drip irrigation with brackish and fresh water

      图  4  咸、淡水膜下滴灌条件下棉花干物质累积

      Fig.  4.  Accumulation of cotton dry matter under mulched drip irrigation with brackish and fresh water

      图  5  棉株内锰、硼与钙元素的相关关系拟合曲线

      a.硼、钙相关关系拟合曲线;b.锰、钙相关关系拟合曲线.1.根、铃、絮(Ca>10 000×10-6);2.茎、蕾(Ca:10 000×10-6~20 000×10-6);3.蕾期叶片(Ca:20 000×10-6~30 000×10-6);4.絮期叶片(Ca:30 000×10-6~40 000×10-6)

      Fig.  5.  Matched curve of correlations among manganese, boron and calcium in cotton

      表  1  2012年巴州灌溉试验站灌溉用水中主要元素和离子含量

      Table  1.   Elements and anions in irrigation water of Bazhou Irrigation Experimental Station in 2012

      元素及离子 淡水 微咸水
      Cu 6.1±0.2 8.0±0.3
      Zn 84.4±4.3 127.3±4.2
      Fe 449.7±29 690.6±23.1
      Mn 21.6±1.9 27.1±1.5
      B 92.9±12.5 293.7±20.5**
      Na 67.86±11.20 401.37±7.43**
      K 7.12±1.11 23.38±0.43**
      Ca 51.57±3.24 145.01±3.98**
      Mg 24.06±1.84 100.67±3.98**
      HCO3- 196.08±3.16 368.07±2.81**
      NO3- 16.37±1.36 47.14±2.25**
      Cl- 55.18±7.09 443.20±10.61**
      SO42- 132.75±13.57 704.70±15.15**
      注:Cu、Fe、Mn、Zn、B含量的单位为μg/L,其余为mg/L;表内各项指标为平均值±标准差;*表示0.05水平上,2种处理差异显著;**表示0.01水平上,2种处理差异极显著;表 24~7同理.
      下载: 导出CSV

      表  2  供试土壤中各元素背景值(10-6)

      Table  2.   Background value of different elements in tested soil (10-6)

      处理 深度(cm) Cu Fe Mn Zn B Ca Mg Na 有效钾 有效磷 有效氮
      微咸水 0~10 0.88±0.06 102±0.8 58.9±3.2 1.58±0.24 1.56±0.09 21 023±1113 587±7 169±69 47.9±5.9 11.3±3.8 23.3±2.2
      10~20 0.93±0.03 101±2.9 57.1±1.6 1.12±0.03 1.80±0.06 19 622±687 569±14 143±41 47.0±1.2 20.4±5.4 22.1±3.2
      20~30 0.94±0.04 100±4.3 58.8±1.6 1.00±0.08 1.92±0.21 20 371±1097 557±9 123±10 55.6±8.1 14.0±3.5 26.0±3.5
      30~40 0.75±0.03 87±2.8 55.0±2.2 0.87±0.11 1.40±0.13 21 124±607 447±8 108±5 50.8±4.6 5.5±3.3 18.3±2.0
      40~50 0.81±0.13 83±5.1 58.8±4.0 0.96±0.34 1.55±0.29 18 244±1686 600±40 151±24 56.5±6.4 4.3±2.3 15.4±1.6
      50~60 0.87±0.06 96±2.9 64.2±5.6 0.72±0.20 1.83±0.17 24 892±961 756±9 231±67 53.1±3.6 3.4±0.8 12.5±0.8
      淡水 0~10 0.91±0.07 101±6.3 57.8±4.6 1.52±0.33 1.70±0.38 20 662±1690 610±35 156±47 50.6±2.1 12.0±4.7 24.5±2.1
      10~20 0.96±0.17 102±6.9 59.3±3.3 1.09±0.23 1.78±0.43 20 332±953 587±43 135±30 46.0±3.7 19.7±4.1 23.2±2.8
      20~30 0.99±0.16 97±6.8 56.3±4.1 1.02±0.16 2.07±0.70 19 232±1987 563±33 127±22 54.2±1.5 13.2±6.7 25.0±1.4
      30~40 0.73±0.02 85±5.4 58.0±6.9 0.94±0.27 1.33±0.12 21 884±1450 470±84 104±27 52.8±4.6 5.9±7.3 17.5±4.1
      40~50 0.79±0.11 88±8.8 62.8±9.0 1.04±0.17 1.51±0.27 19 650±3896 637±47 156±44 53.6±10.1 4.1±2.5 14.8±1.3
      50~60 0.83±0.26 91±15.3 62.1±4.9 0.75±0.48 1.97±0.02 25 050±3322 762±66 214±3 55.5±6.9 3.5±0.2 13.3±3.6
      下载: 导出CSV

      表  3  2012年田间灌水、施肥方案

      Table  3.   Scheme of irrigation and fertilization in 2012

      生育期 蕾期 花期 铃期 吐絮初期 合计
      灌水次数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
      灌水日期(月/日) 6/25 6/30 7/5 7/10 7/15 7/20 7/25 7/30 8/4 8/9 8/14 8/19 8/24 8/29 9/3
      灌水份额(%) 4.3 7.1 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 5.7 5.7 2.9 2.9 2.9 100.0
      灌水量(mm) 22.499 37.498 44.998 44.998 44.998 44.998 44.998 44.998 44.998 44.998 29.999 29.999 14.999 14.999 14.999 524.970
      施氮量(kg/hm2) 14.4 19.2 52.8 60.0 60.0 60.0 266.4
      下载: 导出CSV

      表  4  不同生育期棉株钾钠比、钙钠比

      Table  4.   The ratio of K+/Na+ and Ca2+/Na+ in cotton at different growth stages

      生育期 器官 K+/Na+ Ca2+/Na+
      微咸水 淡水 微咸水 淡水
      蕾期 16.33±1.44 13.35±1.97 3.16±1.36 2.22±0.54
      14.36±0.12* 8.14±1.11 5.87±1.82 3.79±1.47
      9.69±1.81 5.45±1.27 16.02±1.43** 9.12±0.74
      86.64±3.36** 39.28±2.78 81.83±2.28** 51.35±1.71
      絮期 5.32±1.93 5.10±0.13 1.64±0.45 1.48±0.23
      4.94±1.04* 6.31±0.54 2.16±0.76 2.41±0.09
      3.80±1.52 4.39±0.04 5.06±0.69** 8.22±1.34
      48.41±6.19 46.57±9.66 13.10±4.98 10.65±1.85
      25.22±8.83* 37.71±6.65 5.75±0.79** 7.73±0.31
      下载: 导出CSV

      表  5  咸、淡水膜下滴灌条件下棉花根冠比

      Table  5.   Root/shoot ratios under mulched drip irrigation with brackish and fresh water

      播种后天数(d) 处理 棉花不同器官干物质(g)
      地下部干物质重(g) 地上部干物质重(g) 根冠比
      59 微咸水 1.03±0.78 1.61±0.35 1.64±0.52 0.27±0.03 1.03±0.78 3.51±1.17 29.2±5.1%
      淡水 1.23±0.72 2.04±0.3 1.64±0.47 0.34±0.04 1.23±0.72 4.02±1.23 30.5±6.3%
      66 微咸水 2.37±0.63 5.84±1.83 6.33±1.98 0.95±0.35* 1.27±0.44* 2.37±0.63 14.39±4.25 16.5±1.4%
      淡水 1.58±0.58 3.61±0.46 4.81±0.48 0.45±0.13 0.31±0.02 1.58±0.58 9.17±1.11 17.2±1.2%
      71 微咸水 2.24±0.35* 7.33±0.14* 8.08±0.74 2.81±0.51* 0.16±0.03* 2.24±0.35* 18.37±1.37* 12.2±1.5%
      淡水 1.65±0.48 4.74±1.28 6.29±1.74 1.89±0.35 0.27±0.01 1.65±0.48 13.18±1.38 12.5±3.6%
      81 微咸水 3.62±0.11** 10.56±1.82 9.02±1.68* 2.32±0.52* 0.30±0.02* 9.18±0.05** 3.62±0.11** 31.38±5.01* 11.5±1.5%
      淡水 2.33±0.15 8.32±0.31 7.19±0.54 1.43±0.39 0.48±0.05 2.25±0.01 2.33±0.15 19.66±0.04 11.9±1.7%
      116 微咸水 6.54±0.81* 16.62±2.87 16.16±2.81 27.17±2.11* 6.54±0.81* 59.95±3.04* 10.9±0.9%*
      淡水 3.28±0.69 13.39±0.87 10.83±3.23 21.38±2.94 3.28±0.69 45.59±3.16 7.2±0.6%
      137 微咸水 6.47±1.98 14.45±2.41 17.47±0.85* 29.89±8.74 25.61±7.72 6.47±1.98 87.42±3.94* 7.4±1.4%
      淡水 4.04±0.42 9.32±2.96 8.53±1.85 22.23±8.18 19.71±5.41 4.04±0.42 59.79±6.97 6.8%±1.9%
      下载: 导出CSV

      表  6  咸、淡水膜下滴灌条件下棉株产量

      Table  6.   Cotton yields under mulched drip irrigation with brackish and fresh water

      处理 单铃重(g) 单位面积铃数(个/3.3 m2) 籽棉产量(kg/hm2)
      微咸水 6.014±0.534 397.8±48.5** 7 177.05±883.96**
      淡水 5.833±0.428 318.3±42.6 5 569.95±754.32
      下载: 导出CSV

      表  7  咸、淡水膜下滴灌棉花内元素组成(吐絮期)

      Table  7.   Elements composition in cotton under mulched drip irrigation with brackish and fresh water (boll opening stage)

      处理 器官 Cu Fe Mn Zn B Ca Mg Na K
      微咸水 5.6±0.8 70.2±3.0 5.6±0.2** 9.0±1.1* 11.1±0.2 2 793±18** 1 437±3** 1 709±8** 9 099±50**
      7.4±0.1** 213.9±8.2* 11.0±0.8 23.2±9.2 32.4±0.2** 21 418±234** 10 840±313** 9 960±40** 49 145±467**
      4.4±1.0 374.6±5.4 27.5±4.2 16.3±1.1 39.0±1.5* 33 841±138** 7 710±30** 6 707±100** 25 470±466**
      3.3±0.6** 89.7±1.4* 8.3±0.5 14.5±1.2 15.5±1.7 3 741±223** 2 119±11 283±13 13 829±286
      2.6±0.1** 109.1±2.4** 8.5±0.6** 15.5±1.2* 10.6±0.4** 1 545±16** 1 407±18** 264±4** 6 763±23**
      淡水 3.0±1.1 73.8±8.4 3.6±0.2 10.5±0.7 11.0±1.3 2 390±46 1204±12 1 614±18 8 221±45
      6.4±0.2 239.9±3.4 10.3±2.1 27.5±5.9 23.2±0.6 22 808±194 12 622±384 9 472±28 59 798±550
      4.8±0.1 384.0±45.4 29.1±1.8 17.9±1.5 43.3±1.6 35 825±465 7 857±27 4 368±15 19 177±786
      4.4±0.9 70.4±8.7 7.4±0.6 12.0±1.4 13.7±0.3 3084±21 2 071±51 291±6 13 506±316
      2.2±0.1 59.8±0.5 6.8±0.2 11.9±1.2 5.7±0.1 1254±29 1 023±144 163±4 6 111±76
      注:元素单位为10-6.
      下载: 导出CSV

      表  8  棉株内9种元素间相关性分析(n=54)

      Table  8.   Correlations of 9 elements in cotton

      元素 Cu Fe Mn Zn B Ca Mg Na K
      Cu 1.000
      Fe 0.294* 1.000
      Mn 0.407** 0.576** 1.000
      Zn 0.35** 0.617** 0.529** 1.000
      B 0.349** 0.579** 0.648** 0.267 1.000
      Ca 0.35** 0.38** 0.704** 0.295* 0.715** 1.000
      Mg 0.458** 0.220 0.53** 0.246 0.534** 0.794** 1.000
      Na 0.068 0.136 -0.012 -0.082 0.260 0.493** 0.607** 1.000
      K 0.080 0.177 -0.030 0.133 0.162 0.382** 0.587** 0.782** 1.000
      下载: 导出CSV
    • [1] Abdulnour, J.E., Donnelly, D.J., Barthakur, N.N., 2000. The Effect of Boron on Calcium Uptake and Growth in Micropropagated Potato Plantlets. Potato Research, 43(3): 287-295. doi: 10.1007/BF02358088
      [2] Abo-Kassem, E., Sharafeldin, A., Rozema, J., et al., 1995. Synergistic Effects of Cadmium and NaCl on the Growth, Photosynthesis and Ion Content in Wheat Plants. Biologia Plantarum, 37(2): 241-249. doi: 10.1007/BF02913220
      [3] Al-Karaki, G., 2000. Growth, Water Use Efficiency and Sodium and Potassium Acquisition by Tomato Cultivars Grown under Salt Stress. Journal of Plant Nutrition, 23: 1-8. doi: 10.1080/01904160009381992
      [4] Bastias, E., Fernandez-Garcia, N., Carvajal, M., 2004. Aquaporin Functionality in Roots of Zea Mays in Relation to the Interactive Effects of Boron and Salinity. Plant Biology, 6(4): 415-421. doi: 10.1055/s-2004-820889
      [5] Chen, D.M., Yu, R.P., 1996. Studies on Relative Salt Tolerance of Crops Ⅱ. Salt Tolerance of Some Main Crop Species. Acta Pedologica Sinica, 33(2): 121-128 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/289638
      [6] Chen, J.S., Deng, B.S., Tao, S., et al., 1990. Environmental Geochemistry. China Ocean Press, Beijing, 140 (in Chinese).
      [7] Dasgan, H., Aktas, H., Abak, K., et al., 2002. Determination of Screening Techniques to Salinity Tolerance in Tomatoes and Investigation of Genotype Responses. Plant Science, 163(4): 695-703. doi: 10.1016/S0168-9452(02)00091-2
      [8] Dogan, I., Ozyigit, I.I., Demir, G., 2012. Mineral Element Distribution of Cotton (Gossypium Hirsutum L. ) Seedlings under Different Salinity Levels. Pakistan Journal of Botany, 44(1): 15-20. http://www.researchgate.net/publication/259477828_MINERAL_ELEMENT_DISTRIBUTION_OF_COTTON_GOSSYPIUM_HIRSUTUM_L_SEEDLINGS_UNDER_DIFFERENT_SALINITY_LEVELS
      [9] Dong, H.Z., 2010. Cotton Farming in Saline Soil. Science Press, Beijing, 77 (in Chinese).
      [10] Gouia, H., Ghorbal, M.H., Touraine, B., 1994. Effects of NaCl on Flows of N and Mineral Ions and on NO3- Reduction Rate within Whole Plants of Salt-Sensitive Bean and Salt-Tolerant Cotton. Plant Physiology, 105(4): 1409-1418. doi: 10.1104/pp.105.4.1409
      [11] Guo, W.Q., Bian, S.G., Zhang, P.T., et al., 2012. Analysis of Yield and Yield Formation Features of High-Yielding Cotton Cultivars Planted in Coastal Saline-Alkali Soil in Jiangsu Province. Acta Agriculturae Jiangxi, 24(9): 15-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8581.2012.09.004
      [12] He, Y.J., Wang, B.G., Wang, Z.M., et al., 2010. Study on Irrigation Scheduling of Cotton under Mulch Drip Irrigation with Brackish Water. Transactions of the CSAE, 26(7): 14-20 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-6819.2010.07.003
      [13] Jin, M.G., Zhang, R.Q., Gao, Y.F., et al., 1998. Sustainable Irrigation with Brackish Groundwater in Heilonggang Region, China. Journal of China University of Geosciences, 9(1): 90-94. http://d.wanfangdata.com.cn/Periodical_dqkx-e199801011.aspx
      [14] Keyser, H.H., Munns, D.N., 1979. Effects of Calcium, Manganese, and Aluminum on Growth of Rhizobia in Acid Media. Soil Science Society of America Journal, 43(3): 500-503. doi: 10.2136/sssaj1979.03615995004300030014x
      [15] Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London, 171-178.
      [16] Mikkelsen, R.L., Haghnia, G.H., Page, A.L., et al., 1988. The Influence of Selenium, Salinity, and Boron on Alfalfa Tissue Composition and Yield. Journal of Environmental Quality, 17(1): 85-88. doi: 10.2134/jeq1988.00472425001700010012x
      [17] Minarik, C.E., Shive, J.W., 1939. The Effect of Boron in the Substrate on Calcium Accumulation by Soybean Plants. American Journal of Botany, 26(10): 827-831. doi: 10.1002/j.1537-2197.1939.tb09363.x
      [18] Redondo-Go'mez, S., Andrades-Moreno, L., Naranjo, E.M., et al., 2011. Synergic Effect of Salinity and Zinc Stress on Growth and Photosynthetic Responses of the Cordgrass, Spartina Densiflora. Journal of Experimental Botany, 62(15): 5521-5530. doi: 10.1093/jxb/err234
      [19] Rengel, Z., 1992. The Role of Calcium in Salt Toxicity. Plant Cell Environment, 15(6): 625-632. doi: 10.1111/j.1365-3040.1992.tb01004.x
      [20] Saleh, B., 2012. Effect of Salt Stress on Growth and Chlorophyll Content of Some Cultivated Cotton Varieties Grown in Syria. Communications in Soil Science and Plant Analysis, (43): 1976-1983. doi: 10.1080/00103624.2012.693229
      [21] Wang, D., Kang, Y.H., Wan, S.Q., 2007. Distribution Characteristics of Different Salt Ions in Soil under Drip Irrigation with Saline Water. Transactions of the CSAE, 23(2): 83-87 (in Chinese with English abstract). doi: 1002-6819(2007)2-0083-05
      [22] Wang, Z.M., Jin, M.G., He, Y.J., et al., 2012. Water Flow and Salt Transport in Cotton Field of Mulched Drip-Irrigation Using Dye Tracer. Earth Science—Journal of China University of Geosciences, 37(5): 1093-1100 (in Chinese with English abstract). doi: 10.3799/dqkx2012.116
      [23] Wu, Z.D., Wang, Q.J., 2010. Effect on Both Soil Infiltration Characteristics and Ion Mobility Features by Mineralization Degree of Infiltration Water. Transactions of the Chinese Society for Agricultural Machinery, 41(7): 64-69 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1298.2010.07.014
      [24] Xin, C.S., Tang, W., Wang, H.Z., et al., 2002. Responses of Seedling Growth of Lumian 14 to NaCl Stress and Effects of Treatments with Microelement and Hormone. Cotton Science, 14(2): 108-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-7807.2002.02.010
      [25] Yermiyahu, U., Ben-Gal, A., Keren, R., et al., 2008. Combined Effect of Salinity and Excess Boron on Plant Growth and Yield. Plant Soil, 304(1-2): 73-87. doi: 10.1007/s11104-007-9522-z
      [26] 陈德明, 俞仁培, 1996. 作物相对耐盐性的研究——Ⅱ. 不同栽培作物的耐盐性差异. 土壤学报, 33(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB602.001.htm
      [27] 陈静生, 邓宝山, 陶澍, 等, 1990. 环境地球化学. 北京: 海洋出版社, 140.
      [28] 董合忠, 2010. 盐碱地棉花栽培学. 北京: 科学出版社, 77.
      [29] 郭文琦, 卞曙光, 张培通, 等, 2012. 江苏沿海滩涂盐碱地植棉高产品种产量及形成特征分析. 江西农业学报, 24(9): 15-18. doi: 10.3969/j.issn.1001-8581.2012.09.004
      [30] 何雨江, 汪丙国, 王在敏, 等, 2010. 棉花微咸水膜下滴灌灌溉制度的研究. 农业工程学报, 26(7): 14-20. doi: 10.3969/j.issn.1002-6819.2010.07.003
      [31] 王丹, 康跃虎, 万书勤, 2007. 微咸水滴灌条件下不同盐分离子在土壤中的分布特征. 农业工程学报, 23 (2): 83-87. doi: 10.3321/j.issn:1002-6819.2007.02.016
      [32] 王在敏, 靳孟贵, 何雨江, 等, 2012. 基于染色示踪的膜下滴灌水盐运移规律. 地球科学——中国地质大学学报, 37(5): 1093-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205025.htm
      [33] 吴忠东, 王全九, 2010. 入渗水矿化度对土壤入渗特征和离子迁移特性的影响. 农业机械学报, 41 (7): 64-69. doi: 10.3969/j.issn.1000-1298.2010.07.014
      [34] 辛承松, 唐薇, 王洪征, 等, 2002. 鲁棉14幼苗生长对氯化钠胁迫的反应及微量元素、激素处理的效应. 棉花学报, 14(2): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MHXB200202009.htm
    • 加载中
    图(5) / 表(8)
    计量
    • 文章访问数:  3048
    • HTML全文浏览量:  130
    • PDF下载量:  421
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-09-26
    • 刊出日期:  2014-06-15

    目录

      /

      返回文章
      返回