• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    伊通盆地岔路河断陷油气二次运移模拟

    唐文旭 曹强

    唐文旭, 曹强, 2014. 伊通盆地岔路河断陷油气二次运移模拟. 地球科学, 39(6): 741-750. doi: 10.3799/dqkx.2014.069
    引用本文: 唐文旭, 曹强, 2014. 伊通盆地岔路河断陷油气二次运移模拟. 地球科学, 39(6): 741-750. doi: 10.3799/dqkx.2014.069
    Tang Wenxu, Cao Qiang, 2014. Modeling of Hydrocarbon Secondary Migration in the Chaluhe Sag, Yitong Basin. Earth Science, 39(6): 741-750. doi: 10.3799/dqkx.2014.069
    Citation: Tang Wenxu, Cao Qiang, 2014. Modeling of Hydrocarbon Secondary Migration in the Chaluhe Sag, Yitong Basin. Earth Science, 39(6): 741-750. doi: 10.3799/dqkx.2014.069

    伊通盆地岔路河断陷油气二次运移模拟

    doi: 10.3799/dqkx.2014.069
    基金项目: 

    中央高校基本科研业务费专项资金资助项目“伊通盆地晚渐新世以来压扭构造活动的油气二次运移响应” 2012029135

    国家自然科学基金项目“残余盆地古流体动力场演化” 40172051

    “构造与油气资源”教育部重点实验室开放基金项目 TPR-2011-33

    详细信息
      作者简介:

      唐文旭(1979-),男,在读博士研究生,高级工程师,主要从事油气成藏研究.E-mail: 693288546@qq.com

      通讯作者:

      曹强,E-mail: caoqiangcug@gmail.com

    • 中图分类号: TE122

    Modeling of Hydrocarbon Secondary Migration in the Chaluhe Sag, Yitong Basin

    • 摘要: 以伊通盆地岔路河断陷含油气系统研究为基础,应用二维(2D)盆地模拟方法,对伊通盆地岔路河断陷内主要生储组合E2s(油源)-E2s(储层)的油气二次运移演化历史进行了模拟恢复;并依据区内油气汇聚区带的平面分布特征划分油气运聚单元,基于此对各运聚单元内的烃源条件、输导体系、保存条件等油气成藏条件进行综合对比.研究表明:(1)岔路河断陷含油气系统要素配置关系良好,且发育3期油气成藏,E2s-E2s(!)为已证实的最重要的含油气系统;(2)岔路河断陷势能场分布控制了同期油气二次运移方向和强度,区内主成藏期油气二次运移范围广、强度(流线密度)大,有利运移指向区主要集中于西北缘盆缘断裂附近和东部的万昌、梁家构造带之内的油气低势区;(3)岔路河断陷可划分为4个油气运聚单元(Ⅰ、Ⅱ、Ⅲ和Ⅳ),运聚单元Ⅱ的成藏条件最为优越,而运聚单元Ⅰ内的万昌构造带围斜地区亦可作为本区有利勘探区带.

       

    • 图  1  伊通盆地岔路河断陷构造区划

      Fig.  1.  Major tectonic units of the study area in the Yitong basin showing well and three cross section locations

      图  2  岔路河断陷含油气系统事件

      Fig.  2.  Events chart for the Eocene and Oligocene petroleum systems in the Chaluhe sag

      图  3  岔路河断陷E2s-E2s生储系统油气运移流线演化史

      a.36.6 Ma;b.30 Ma;c.10 Ma;d.0 Ma

      Fig.  3.  Evolution history chart for the petroleum migration routes and accumulation sites of the E2s-E2s system in the Chaluhe sag

      图  4  岔路河断陷E2s-E2s生储系统油气有利运聚单元示意

      a.运聚单元划分;b.运聚单元Ⅰ成藏模式;c.运聚单元Ⅱ成藏模式;d.运聚单元Ⅳ成藏模式

      Fig.  4.  Evolution history chart for the petroleum migration routes and accumulation sites of the E2s-E2s system in the Chaluhe sag

      表  1  岔路河断陷油气二次运移模拟计算方法

      Table  1.   Methods for secondary migration modeling in the Chaluhe sag

      模拟内容 方法选择 拟合依据 参考文献
      埋藏史(压实过程) 联合流体流动压实模型 实测孔隙度数据 石广仁等,1993
      孔隙度变化 Bethke, 1985
      渗透率变化 改进的Kozeny-Carman模型 实测渗透率数据 Ungerer et al., 1990
      盆地热流演化 瞬时热流模型 实测地温数据 Bethke, 1985; Jessop, 1990
      有机质热成熟度史 Easy %Ro模型 实测Ro数据 Sweeney and Burnham, 1990
      排烃史 饱和度排烃模型 排烃门限饱和度为5% England et al., 1987
      注:表中实测地温数据包括DST和试油温度数据.
      下载: 导出CSV

      表  2  岔路河断陷E2s-E2s生储系统(成藏组合)油气运聚单元综合评价

      Table  2.   Comprehensive evaluation on hydrocarbon migration-accumulation unit of the source kitchen-reservoir assemblage (E2s-E2s) in the Chaluhe sag

      成藏条件 运聚单元-Ⅰ 运聚单元-Ⅱ 运聚单元-Ⅲ 运聚单元-Ⅳ
      分布范围 万昌构造带及其围斜带 新安堡凹陷和梁家构造带 孤店斜坡带 波-太凹陷
      烃源条件 西侧新安堡凹陷和东侧波-太凹陷双阳组源岩双重供烃,油源充足 新安堡凹陷双阳组源岩油源充足 波-太凹陷双阳组源岩,油源充足 波-太凹陷双阳组源岩,油源充足
      输导体系 砂体和断裂 砂体和断裂 砂体和断裂 砂体和断裂
      储集条件 砂体发育,储层物性较好 砂体较发育 砂体较发育 砂体欠发育
      圈闭类型 岩性圈闭为主、少量岩性-断层圈闭 断层-岩性断层圈闭 断鼻、断背斜圈闭 岩性圈闭和断层-岩性圈闭
      保存条件 构造带顶部发育张性断裂,断至双阳组上部地层,封盖条件差 封盖条件好 较差 封盖条件好
      流线类型 平行-汇聚流为主 汇聚流为主 汇聚流 汇聚流为主
      运移评价 近源侧向运聚为主,条件好 近源垂向和侧向运聚,条件好 远源侧向汇聚为主,条件好 近源垂向运聚,条件好
      油气藏类型 断层-岩性油气藏 断层-岩性油气藏 断鼻油气藏 岩性油气藏
      典型油气藏 万参1井和昌27井双阳组气层 昌25井和昌12井双阳组气层 昌32井双阳组气层 昌9井双阳组气层
      综合评价 构造带围斜较好 一般 一般
      下载: 导出CSV
    • [1] Aydin, A., 2000. Fractures, Faults and Hydrocarbon Entrapment, Migration and Flow. Natural Gas Geoscience, 17(7): 797-814. doi: 10.1016/S0264-8172(00)00020-9
      [2] Bekele, E., Person, M., Rostron, B., et al., 2002. Modeling Secondary Oil Migration with Core-Scale Data: Viking Formation, Alberta Basin. AAPG Bulletin, 86(1): 55-74.
      [3] Bethke, C.M., 1985. A Numerical Model of Compaction Driven Groundwater Flow and Heat Transfer and Its Application to the Paleohydrology of Intracratonic Sedimentary Basins. Journal of Geophysical Research, 90(8): 6817-6828. doi: 10.1029/JB090iB08p06817
      [4] Cao, Q., 2010. Dynamics of Hydrocarbon Accumulation in the Yitong Basin (Dissertation). China University of Geosciences, Wuhan, 101-104 (in Chinese with English abstract).
      [5] Cao, Q., Ye., J.R., Shen, C.B., et al., 2010. Tectonic Uplift History of the Yitong Basin since the Oligocene, Northeast China: Evidences from Apatite Fission Track Ages and Geological Relationship. Chinese Journal of Geochemistry, 29(3): 293-300. doi: 10.1007/s11631-010-0459-1
      [6] Carruthers, D., Ringose, P., 1998. Secondary Oil Migration: Oil-Rock Contact Volumes, Flow Behavior and Rates. In: Parnell, J., ed., Dating and Duration of Fluid Flow and Fluid-Rock Interaction. Geological Society, London, Special Publication, 144: 205-220.
      [7] Catalan, L., Xiao, W.F., Chatzis, I., et al., 1992. An Experimental Study of Secondary Oil Migration. AAPG Bulletin, 76(5): 638-650.
      [8] Corradi, A.P., Ruffo, A., Corrao, et al., 2009.3D Hydrocarbon Migration by Percolation Technique in an Alternate Sand-Shale Environment Described by a Seismic Facies Classified Volume. Marine and Petroleum Geology, 26(4): 495-503. doi: 10.1016/j.marpetgeo.2009.01.002
      [9] England, W.A., Mackenzie, A.S., Mann, D.W., et al., 1987. The Movement and Entrapment of Petroleum Fluids in the Subsurface. Journal of Geological Society, London, 144(2): 327-347. doi: 10.1144/gsjgs.144.2.0327
      [10] Feng, Y., Chen, H.H., Ye, J.R., et al., 2008. Reservoir-Forming Periods and Accumulation Process of Chaluhe Fault Depression of Yitong Basin. Earth Science—Journal of China University of Geosciences, 34(3): 502-510 (in Chinese with English abstract).
      [11] Gussow, W.C., 1968. Migration of Reservoir Fluids. Journal of Petroleum Technology, 20(4): 353-365. doi: 10.2118/1870-PA
      [12] Hermans, L., Kuyk, V.A.D., Lehner, F.K., et al., 1992. Modeling Secondary Hydrocarbon Migration on Haltenbanken, Norway. In: Larsen, R.M., Brekke, H., Larsen, B.J., eds., Structural and Tectonic Modeling and Its Applications to Petroleum Geology. Norwegian Petroleum Society, Special Publication, 1: 305-323.
      [13] Hindle, A.D., 1997. Petroleum Migration Pathways and Charge Concentration: A Three-Dimensional Model. AAPG Bulletin, 81(9): 1451-1481.
      [14] Jessop, A.M., 1990. Thermal Geophysics. Elsevier, Amsterdam, 305-306.
      [15] Jiang, L., Hong, F., Liu., S.B., et al., 2011. Physical Simulation of Oil and Natural Gas Secondary Migration. Natural Gas Geoscience, 22(5): 784-788 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201105006.htm
      [16] Li, B.C., Liu, H.Y., Du, H.X., et al., 2003. The Petroleum System and Accumulation in Yitong Basin. China Petroleum Exploration, 8(3): 38-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY200303008.htm
      [17] Li, Y.T., 2012. Hydrocarbon Accumulation Mechanism and Distribution Law of Liangjia Shallow Reservoirs, Yitong Basin. China Petroleum Exploration, 2(3): 12-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201202004.htm
      [18] Liang, C.X., Wei, Z.P., Li, B.C., et al., 2002. Carrying Bed Systems and Oil & Gas Migration in Yilan-Yitong Basin. Natural Gas Industry, 22(1): 31-32 (in Chinese with English abstract).
      [19] Liu, H.Y., Peng, S.P., Wei, Z.P., et al, 2002. Characteristics and Maturity of Crude Oil in the Yitong Graben. Petroleum Exploration and Development, 29(3): 21-23 (in Chinese with English abstract). http://www.researchgate.net/publication/283857449_Characteristics_and_maturity_of_crude_oil_in_Yitong_graben
      [20] Magoon, L.B., Dow, W.G., 1994. The Petroleum System—From Source to Trap. AAPG Memoir, 60: 3-24.
      [21] Mu, Z.H., Chen, Z.Y., Lu, T.Q., et al., 2000. The Recovery of Mesozoic Formation Erosion Thickness in the North Margin of Qaidam Basin. Petroleum Exploration and Development, 27(1): 35-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200001014.htm
      [22] Pratsch, J.C., 1994. The Location of Major Oil- and Gas Fields: Examples from the Andean Foreland. Journal of Petroleum Geology, 17(3): 327-338. doi: 10.1111/j.1747-5457.1994.tb00138.x
      [23] Rhea, L., Person, M., Marsily, D.G., et al., 1994. Geostatistical Models of Secondary Oil Migration within Heterogeneous Carrier Beds: A Theoretical Example. AAPG Bulletin, 78(11): 1679-1691. http://aapgbull.geoscienceworld.org/content/78/11/1679
      [24] Sandvik, E.I., Mercer, J.N., 1990. Primary Migration by Bulk Hydrocarbon Flow. Organic Geochemistry, 16(1-3): 83-89. doi: 10.1016/0146-6380(90)90028-X
      [25] Shi, G.R., Guo, Q.L., Mi, S.Y., et al., 1993. The Synthetical System and Method in Basin Modeling. In: Zhao, Z.Y., ed., The Research Advances on Geology of Petroliferous Basins. Xi'an Press, Xi'an, 67-72 (in Chinese with English abstract).
      [26] Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74(10): 1559-1570. http://www.researchgate.net/publication/255005110_Evaluation_of_a_simple_model_of_vitrinite_reflectance_based_on_Chemical_kinetics
      [27] Sylta, O., Pedersen, J.I., Hamborg, M., 1998. On the Vertical and Lateral Distribution of Hydrocarbon Migration Velocities during Secondary Migration. In: Parnell, J., ed., Dating and Duration of Fluid Flow and Fluid-Rock Interaction. Geological Society, London, Special Publication, 221-232.
      [28] Tang, D.Q., 2009. The Structural Character and Tectonic Evolution of Yitong Basin—Analysis of a Typical Strike-Slip and Extensional Basin (Dissertation). China University of Geosciences, Wuhan, 56-58 (in Chinese with English abstract).
      [29] Thomas, M.M., Clouse, J.A., 1995. Scaled Physical Model of Secondary Migration. AAPG Bulletin, 79(1): 19-59.
      [30] Tong, H.M., Ji, H.Y., Song, L.Z., et al., 2002. Tectonic Styles and Oil-Gas Distribution in Yitong Graben. Journal of Xi'an Petroleum Institute (Natural Science Edition), 17(5): 9-13 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-xi-shiyou-university-natural-science-edition_thesis/0201211152486.html
      [31] Ungerer, P., Doligez, B.P., Chenet, Y., et al., 1990. Basin Evaluation of Integrated Two-Dimensional Modeling of Heat Transfer, Fluid Flow, Hydrocarbon Generation and Migration. AAPG Bulletin, 46(1): 3-39.
      [32] Wang, Y.C., 2002. The Petroleum System and Hydrocarbon Accumulation in the Yitong Graben. Petroleum Industry Press, Beijing, 143-173 (in Chinese with English abstract).
      [33] Xu, B., Du, Y.S., Yang, Z.B., et al., 2011. Current Situation and Development Trend of the Study on Secondary Hydrocarbon Migration. Special Oil and Gas Reservoirs, 18(1): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ201101002.htm
      [34] Xu, S.C., Dong, Q.S., Yan, L.P., et al., 2011. Comprehensive Liquid Identification of Hydrocarbon Reservoirs in Graben-Like Fault Basin: A Case Study in Chaluhe Depression, Yitong Basin. Journal of Jilin University (Earth Science Edition), 41(2): 359-364 (in Chinese with English abstract). doi: 10.1029/2010JF001793
      [35] 曹强, 2010. 伊通盆地成藏动力学研究(博士学位论文). 武汉: 中国地质大学, 101-104.
      [36] 丰勇, 陈红汉, 叶加仁, 等, 2008. 伊通盆地岔路河断陷油气成藏过程. 地球科学——中国地质大学学报, 34(3): 502-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903015.htm
      [37] 姜林, 洪峰, 柳少波, 等, 2011. 油气二次运移过程差异物理模拟实验. 天然气地球科学, 22(5): 784-788. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201105006.htm
      [38] 李本才, 刘鸿友, 杜怀旭, 等, 2003. 伊通盆地含油气系统与油气藏. 中国石油勘探, 8(3): 38-44. doi: 10.3969/j.issn.1672-7703.2003.03.008
      [39] 李玉彤, 2012. 伊通盆地梁家浅层油气成藏机制及其油气分布规律. 中国石油勘探, 2(3): 12-16. doi: 10.3969/j.issn.1672-7703.2012.03.003
      [40] 梁春秀, 魏志平, 李本才, 等, 2002. 伊兰-伊通盆地输导体系与油气运聚. 天然气工业, 22(1): 31-32. doi: 10.3321/j.issn:1000-0976.2002.01.008
      [41] 刘鸿友, 彭苏萍, 魏志平, 等, 2002. 伊通地堑原油特征与成熟度. 石油勘探与开发, 29(3): 21-23. doi: 10.3321/j.issn:1000-0747.2002.03.007
      [42] 牟中海, 陈志勇, 陆廷清, 等, 2000. 柴达木盆地北缘中生界剥蚀厚度恢复. 石油勘探与开发, 27(1): 35-37. doi: 10.3321/j.issn:1000-0747.2000.01.011
      [43] 石广仁, 郭秋麟, 米石云, 等, 1993. 盆地模拟方法及综合勘探系统. 见: 赵重远编, 含油气盆地地质学研究进展. 西安: 西安出版社, 67-72.
      [44] 唐大卿, 2009. 伊通盆地构造特征与构造演化——典型走滑伸展盆地剖析(博士学位论文). 武汉: 中国地质大学, 56-58.
      [45] 童亨茂, 纪洪勇, 宋立忠, 等, 2002. 伊通地堑构造样式及其油气分布规律. 西安石油学院学报(自然科学版), 17(5): 9-13. doi: 10.3969/j.issn.1673-064X.2002.05.003
      [46] 王永春, 2002. 伊通地堑含油气系统与油气成藏. 北京: 石油工业出版社, 143-173.
      [47] 徐波, 杜岳松, 杨志博, 等, 2011. 油气二次运移研究现状及发展趋势. 特种油气藏, 18(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201101002.htm
      [48] 许圣传, 董清水, 闫丽萍, 等, 2011. 地堑式断陷盆地储层流体综合识别——以伊通盆地岔路河断陷为例. 吉林大学学报(地球科学版), 41(2): 359-364. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201102006.htm
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  3163
    • HTML全文浏览量:  129
    • PDF下载量:  622
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-10-16
    • 刊出日期:  2014-06-15

    目录

      /

      返回文章
      返回