Modeling of Hydrocarbon Secondary Migration in the Chaluhe Sag, Yitong Basin
-
摘要: 以伊通盆地岔路河断陷含油气系统研究为基础,应用二维(2D)盆地模拟方法,对伊通盆地岔路河断陷内主要生储组合E2s(油源)-E2s(储层)的油气二次运移演化历史进行了模拟恢复;并依据区内油气汇聚区带的平面分布特征划分油气运聚单元,基于此对各运聚单元内的烃源条件、输导体系、保存条件等油气成藏条件进行综合对比.研究表明:(1)岔路河断陷含油气系统要素配置关系良好,且发育3期油气成藏,E2s-E2s(!)为已证实的最重要的含油气系统;(2)岔路河断陷势能场分布控制了同期油气二次运移方向和强度,区内主成藏期油气二次运移范围广、强度(流线密度)大,有利运移指向区主要集中于西北缘盆缘断裂附近和东部的万昌、梁家构造带之内的油气低势区;(3)岔路河断陷可划分为4个油气运聚单元(Ⅰ、Ⅱ、Ⅲ和Ⅳ),运聚单元Ⅱ的成藏条件最为优越,而运聚单元Ⅰ内的万昌构造带围斜地区亦可作为本区有利勘探区带.Abstract: Based on the analyses of petroleum systems in the Chaluhe sag, hydrocarbon secondary migration in thesource-reservoir assemblage (E2s-E2s) was evaluated by using 2D basin modeling technique. This study aims to investigate the individual hydrocarbon migration-accumulation units, analyze different conditions for the hydrocarbon accumulation, and locate possible favorable areas as exploration targets. The following conclusions are drawn: (1) Key geologic elements of the petroleum systems are well integrated in the Chaluhe, three events of hydrocarbon accumulation can be identified, and the E2s-E2s (!) is recognized as the most significant petroleum system in the study area. (2) Secondary migration direction and intensity were mainly controlled by the fluid potential energy field. Hydrocarbon accumulation during the main period of hydrocarbon migration was characterized by wide distribution and high density. Hydrocarbon fluids mainly charged two areas with lower fluid potential, namely along the northwest basin-marginal fault and the eastern Wanchang, Liangjia uplifts, respectively. (3) The Chaluhe sag consists off our hydrocarbon migration-accumulation units, including units Ⅰ, Ⅱ, Ⅲ, and Ⅳ. Unit Ⅱ has the best potential for hydrocarbon migration and accumulation, followed by unit Ⅰ. The periclinal area in the Wanchang uplift ranks to be the most favorable area for oil and gas exploration in the Chaluhe sag.
-
Key words:
- Yitong Basin /
- Chaluhe sag /
- basin modeling /
- hydrocarbons /
- migration-accumulation unit /
- petroleum geology
-
表 1 岔路河断陷油气二次运移模拟计算方法
Table 1. Methods for secondary migration modeling in the Chaluhe sag
模拟内容 方法选择 拟合依据 参考文献 埋藏史(压实过程) 联合流体流动压实模型 实测孔隙度数据 石广仁等,1993 孔隙度变化 Bethke, 1985 渗透率变化 改进的Kozeny-Carman模型 实测渗透率数据 Ungerer et al., 1990 盆地热流演化 瞬时热流模型 实测地温数据 Bethke, 1985; Jessop, 1990 有机质热成熟度史 Easy %Ro模型 实测Ro数据 Sweeney and Burnham, 1990 排烃史 饱和度排烃模型 排烃门限饱和度为5% England et al., 1987 注:表中实测地温数据包括DST和试油温度数据. 表 2 岔路河断陷E2s-E2s生储系统(成藏组合)油气运聚单元综合评价
Table 2. Comprehensive evaluation on hydrocarbon migration-accumulation unit of the source kitchen-reservoir assemblage (E2s-E2s) in the Chaluhe sag
成藏条件 运聚单元-Ⅰ 运聚单元-Ⅱ 运聚单元-Ⅲ 运聚单元-Ⅳ 分布范围 万昌构造带及其围斜带 新安堡凹陷和梁家构造带 孤店斜坡带 波-太凹陷 烃源条件 西侧新安堡凹陷和东侧波-太凹陷双阳组源岩双重供烃,油源充足 新安堡凹陷双阳组源岩油源充足 波-太凹陷双阳组源岩,油源充足 波-太凹陷双阳组源岩,油源充足 输导体系 砂体和断裂 砂体和断裂 砂体和断裂 砂体和断裂 储集条件 砂体发育,储层物性较好 砂体较发育 砂体较发育 砂体欠发育 圈闭类型 岩性圈闭为主、少量岩性-断层圈闭 断层-岩性断层圈闭 断鼻、断背斜圈闭 岩性圈闭和断层-岩性圈闭 保存条件 构造带顶部发育张性断裂,断至双阳组上部地层,封盖条件差 封盖条件好 较差 封盖条件好 流线类型 平行-汇聚流为主 汇聚流为主 汇聚流 汇聚流为主 运移评价 近源侧向运聚为主,条件好 近源垂向和侧向运聚,条件好 远源侧向汇聚为主,条件好 近源垂向运聚,条件好 油气藏类型 断层-岩性油气藏 断层-岩性油气藏 断鼻油气藏 岩性油气藏 典型油气藏 万参1井和昌27井双阳组气层 昌25井和昌12井双阳组气层 昌32井双阳组气层 昌9井双阳组气层 综合评价 构造带围斜较好 好 一般 一般 -
[1] Aydin, A., 2000. Fractures, Faults and Hydrocarbon Entrapment, Migration and Flow. Natural Gas Geoscience, 17(7): 797-814. doi: 10.1016/S0264-8172(00)00020-9 [2] Bekele, E., Person, M., Rostron, B., et al., 2002. Modeling Secondary Oil Migration with Core-Scale Data: Viking Formation, Alberta Basin. AAPG Bulletin, 86(1): 55-74. [3] Bethke, C.M., 1985. A Numerical Model of Compaction Driven Groundwater Flow and Heat Transfer and Its Application to the Paleohydrology of Intracratonic Sedimentary Basins. Journal of Geophysical Research, 90(8): 6817-6828. doi: 10.1029/JB090iB08p06817 [4] Cao, Q., 2010. Dynamics of Hydrocarbon Accumulation in the Yitong Basin (Dissertation). China University of Geosciences, Wuhan, 101-104 (in Chinese with English abstract). [5] Cao, Q., Ye., J.R., Shen, C.B., et al., 2010. Tectonic Uplift History of the Yitong Basin since the Oligocene, Northeast China: Evidences from Apatite Fission Track Ages and Geological Relationship. Chinese Journal of Geochemistry, 29(3): 293-300. doi: 10.1007/s11631-010-0459-1 [6] Carruthers, D., Ringose, P., 1998. Secondary Oil Migration: Oil-Rock Contact Volumes, Flow Behavior and Rates. In: Parnell, J., ed., Dating and Duration of Fluid Flow and Fluid-Rock Interaction. Geological Society, London, Special Publication, 144: 205-220. [7] Catalan, L., Xiao, W.F., Chatzis, I., et al., 1992. An Experimental Study of Secondary Oil Migration. AAPG Bulletin, 76(5): 638-650. [8] Corradi, A.P., Ruffo, A., Corrao, et al., 2009.3D Hydrocarbon Migration by Percolation Technique in an Alternate Sand-Shale Environment Described by a Seismic Facies Classified Volume. Marine and Petroleum Geology, 26(4): 495-503. doi: 10.1016/j.marpetgeo.2009.01.002 [9] England, W.A., Mackenzie, A.S., Mann, D.W., et al., 1987. The Movement and Entrapment of Petroleum Fluids in the Subsurface. Journal of Geological Society, London, 144(2): 327-347. doi: 10.1144/gsjgs.144.2.0327 [10] Feng, Y., Chen, H.H., Ye, J.R., et al., 2008. Reservoir-Forming Periods and Accumulation Process of Chaluhe Fault Depression of Yitong Basin. Earth Science—Journal of China University of Geosciences, 34(3): 502-510 (in Chinese with English abstract). [11] Gussow, W.C., 1968. Migration of Reservoir Fluids. Journal of Petroleum Technology, 20(4): 353-365. doi: 10.2118/1870-PA [12] Hermans, L., Kuyk, V.A.D., Lehner, F.K., et al., 1992. Modeling Secondary Hydrocarbon Migration on Haltenbanken, Norway. In: Larsen, R.M., Brekke, H., Larsen, B.J., eds., Structural and Tectonic Modeling and Its Applications to Petroleum Geology. Norwegian Petroleum Society, Special Publication, 1: 305-323. [13] Hindle, A.D., 1997. Petroleum Migration Pathways and Charge Concentration: A Three-Dimensional Model. AAPG Bulletin, 81(9): 1451-1481. [14] Jessop, A.M., 1990. Thermal Geophysics. Elsevier, Amsterdam, 305-306. [15] Jiang, L., Hong, F., Liu., S.B., et al., 2011. Physical Simulation of Oil and Natural Gas Secondary Migration. Natural Gas Geoscience, 22(5): 784-788 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201105006.htm [16] Li, B.C., Liu, H.Y., Du, H.X., et al., 2003. The Petroleum System and Accumulation in Yitong Basin. China Petroleum Exploration, 8(3): 38-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY200303008.htm [17] Li, Y.T., 2012. Hydrocarbon Accumulation Mechanism and Distribution Law of Liangjia Shallow Reservoirs, Yitong Basin. China Petroleum Exploration, 2(3): 12-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201202004.htm [18] Liang, C.X., Wei, Z.P., Li, B.C., et al., 2002. Carrying Bed Systems and Oil & Gas Migration in Yilan-Yitong Basin. Natural Gas Industry, 22(1): 31-32 (in Chinese with English abstract). [19] Liu, H.Y., Peng, S.P., Wei, Z.P., et al, 2002. Characteristics and Maturity of Crude Oil in the Yitong Graben. Petroleum Exploration and Development, 29(3): 21-23 (in Chinese with English abstract). http://www.researchgate.net/publication/283857449_Characteristics_and_maturity_of_crude_oil_in_Yitong_graben [20] Magoon, L.B., Dow, W.G., 1994. The Petroleum System—From Source to Trap. AAPG Memoir, 60: 3-24. [21] Mu, Z.H., Chen, Z.Y., Lu, T.Q., et al., 2000. The Recovery of Mesozoic Formation Erosion Thickness in the North Margin of Qaidam Basin. Petroleum Exploration and Development, 27(1): 35-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200001014.htm [22] Pratsch, J.C., 1994. The Location of Major Oil- and Gas Fields: Examples from the Andean Foreland. Journal of Petroleum Geology, 17(3): 327-338. doi: 10.1111/j.1747-5457.1994.tb00138.x [23] Rhea, L., Person, M., Marsily, D.G., et al., 1994. Geostatistical Models of Secondary Oil Migration within Heterogeneous Carrier Beds: A Theoretical Example. AAPG Bulletin, 78(11): 1679-1691. http://aapgbull.geoscienceworld.org/content/78/11/1679 [24] Sandvik, E.I., Mercer, J.N., 1990. Primary Migration by Bulk Hydrocarbon Flow. Organic Geochemistry, 16(1-3): 83-89. doi: 10.1016/0146-6380(90)90028-X [25] Shi, G.R., Guo, Q.L., Mi, S.Y., et al., 1993. The Synthetical System and Method in Basin Modeling. In: Zhao, Z.Y., ed., The Research Advances on Geology of Petroliferous Basins. Xi'an Press, Xi'an, 67-72 (in Chinese with English abstract). [26] Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74(10): 1559-1570. http://www.researchgate.net/publication/255005110_Evaluation_of_a_simple_model_of_vitrinite_reflectance_based_on_Chemical_kinetics [27] Sylta, O., Pedersen, J.I., Hamborg, M., 1998. On the Vertical and Lateral Distribution of Hydrocarbon Migration Velocities during Secondary Migration. In: Parnell, J., ed., Dating and Duration of Fluid Flow and Fluid-Rock Interaction. Geological Society, London, Special Publication, 221-232. [28] Tang, D.Q., 2009. The Structural Character and Tectonic Evolution of Yitong Basin—Analysis of a Typical Strike-Slip and Extensional Basin (Dissertation). China University of Geosciences, Wuhan, 56-58 (in Chinese with English abstract). [29] Thomas, M.M., Clouse, J.A., 1995. Scaled Physical Model of Secondary Migration. AAPG Bulletin, 79(1): 19-59. [30] Tong, H.M., Ji, H.Y., Song, L.Z., et al., 2002. Tectonic Styles and Oil-Gas Distribution in Yitong Graben. Journal of Xi'an Petroleum Institute (Natural Science Edition), 17(5): 9-13 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-xi-shiyou-university-natural-science-edition_thesis/0201211152486.html [31] Ungerer, P., Doligez, B.P., Chenet, Y., et al., 1990. Basin Evaluation of Integrated Two-Dimensional Modeling of Heat Transfer, Fluid Flow, Hydrocarbon Generation and Migration. AAPG Bulletin, 46(1): 3-39. [32] Wang, Y.C., 2002. The Petroleum System and Hydrocarbon Accumulation in the Yitong Graben. Petroleum Industry Press, Beijing, 143-173 (in Chinese with English abstract). [33] Xu, B., Du, Y.S., Yang, Z.B., et al., 2011. Current Situation and Development Trend of the Study on Secondary Hydrocarbon Migration. Special Oil and Gas Reservoirs, 18(1): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ201101002.htm [34] Xu, S.C., Dong, Q.S., Yan, L.P., et al., 2011. Comprehensive Liquid Identification of Hydrocarbon Reservoirs in Graben-Like Fault Basin: A Case Study in Chaluhe Depression, Yitong Basin. Journal of Jilin University (Earth Science Edition), 41(2): 359-364 (in Chinese with English abstract). doi: 10.1029/2010JF001793 [35] 曹强, 2010. 伊通盆地成藏动力学研究(博士学位论文). 武汉: 中国地质大学, 101-104. [36] 丰勇, 陈红汉, 叶加仁, 等, 2008. 伊通盆地岔路河断陷油气成藏过程. 地球科学——中国地质大学学报, 34(3): 502-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903015.htm [37] 姜林, 洪峰, 柳少波, 等, 2011. 油气二次运移过程差异物理模拟实验. 天然气地球科学, 22(5): 784-788. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201105006.htm [38] 李本才, 刘鸿友, 杜怀旭, 等, 2003. 伊通盆地含油气系统与油气藏. 中国石油勘探, 8(3): 38-44. doi: 10.3969/j.issn.1672-7703.2003.03.008 [39] 李玉彤, 2012. 伊通盆地梁家浅层油气成藏机制及其油气分布规律. 中国石油勘探, 2(3): 12-16. doi: 10.3969/j.issn.1672-7703.2012.03.003 [40] 梁春秀, 魏志平, 李本才, 等, 2002. 伊兰-伊通盆地输导体系与油气运聚. 天然气工业, 22(1): 31-32. doi: 10.3321/j.issn:1000-0976.2002.01.008 [41] 刘鸿友, 彭苏萍, 魏志平, 等, 2002. 伊通地堑原油特征与成熟度. 石油勘探与开发, 29(3): 21-23. doi: 10.3321/j.issn:1000-0747.2002.03.007 [42] 牟中海, 陈志勇, 陆廷清, 等, 2000. 柴达木盆地北缘中生界剥蚀厚度恢复. 石油勘探与开发, 27(1): 35-37. doi: 10.3321/j.issn:1000-0747.2000.01.011 [43] 石广仁, 郭秋麟, 米石云, 等, 1993. 盆地模拟方法及综合勘探系统. 见: 赵重远编, 含油气盆地地质学研究进展. 西安: 西安出版社, 67-72. [44] 唐大卿, 2009. 伊通盆地构造特征与构造演化——典型走滑伸展盆地剖析(博士学位论文). 武汉: 中国地质大学, 56-58. [45] 童亨茂, 纪洪勇, 宋立忠, 等, 2002. 伊通地堑构造样式及其油气分布规律. 西安石油学院学报(自然科学版), 17(5): 9-13. doi: 10.3969/j.issn.1673-064X.2002.05.003 [46] 王永春, 2002. 伊通地堑含油气系统与油气成藏. 北京: 石油工业出版社, 143-173. [47] 徐波, 杜岳松, 杨志博, 等, 2011. 油气二次运移研究现状及发展趋势. 特种油气藏, 18(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201101002.htm [48] 许圣传, 董清水, 闫丽萍, 等, 2011. 地堑式断陷盆地储层流体综合识别——以伊通盆地岔路河断陷为例. 吉林大学学报(地球科学版), 41(2): 359-364. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201102006.htm