Re-Os Radiometric Dating of Molybdenite in Hongling Lead-Zinc Polymetallic Deposit, Inner Mongolia, and Its Significance
-
摘要: 红岭铅锌多金属矿床为大兴安岭南段多金属成矿带的代表性矿床之一.区内发育斑岩型和矽卡岩型2种钼矿化,前者为产于花岗斑岩内呈斑点-浸染状产出的辉钼矿,后者为薄膜状辉钼矿.为确定红岭铅锌多金属矿床的成矿时代,对矿区2种类型的钼矿化进行系统研究和成矿年代测定.5件斑点状辉钼矿样品Re-Os模式年龄介于139.9±2.3 Ma~141.5±3.2 Ma之间,Re-Os等时线年龄为140.3±3.4 Ma(MSWD =0.082),模式年龄加权平均值为140.10±1.80 Ma,两者在同一误差范围完全一致,代表了该红岭矿区斑岩型钼矿化时代为晚侏罗世.1件薄膜状辉钼矿样品模式年龄为143.7±3.6 Ma,应为铅锌矿化阶段的成矿年代上限;其Re、187Os含量较其他样品高出1个数量级,揭示着2种类型钼矿化具有不同的成因,证实区内存在2期钼成矿作用.6件辉钼矿样品的Re含量特征指示其成矿物质的浅源性,应以壳源为主;极低的Re含量可能与其母岩和共生矿物组合有关.结合前人的研究成果,得出红岭铅锌多金属矿床的成岩、成矿物质均来源于增生地壳,成矿动力学背景为蒙古-鄂霍茨克造山带碰撞造山后陆壳伸展环境的认识.Abstract: Hongling lead-zinc polymetallic deposit share many similarities with others from the southern Daxinganling polymetallic metallogenic belt. There are two types of molybdenum mineralization in the mining area, including porphyry and skarn. The former, displaying spot-disseminated feature, occurs in granite porphyry, whereas the latter, displaying film like feature, occurs in quartz. The metallogenic age of Hongling deposit can be constrained from Re-Os isotopic dating of the two kinds of molybdenite. Five samples of spot-disseminated molybdenite yield model ages varying from 139.9±2.3 Ma to 141.5±3.2 Ma, with an isochron age of 140.3±3.4 Ma (MSWD=0.082), and a weighted average of 140.10±1.80 Ma. The isochron age and weighted average model age are consistent with one another, implying that molybdenum mineralization in Hongling deposit occurred in Late Jurassic. A film-like molybdenite sample yielded a model age of 143.7±3.6 Ma, representing the initial stage of lead-zinc mineralization. The Re-187Os contents of the film-like molybdenite are higher than that of spot-disseminated molybdeniteby one order of magnitude, which hints that they have different origins and there are two phases of molybdenum mineralization. The characteristics of Re content of the 6 molybdenite samples suggest that the ore-forming elements had a shallow source, and was mainly derived from the crust. The extremely low content of Re might be du to the low Re content within its parent magma as well as its paragenetic mineral assemblage. Combined with the results of previous study, it is concluded that (a) both rock- and ore-forming materials of Hongling deposit came from hyperplasia crust; and (b) the deposit formed in a dynamical environment of continental crust extension post Mongolia-Okhotsk collisional orogeny.
-
图 1 红岭铅锌多金属矿区地质简图及ZK-3钻孔剖面地质图
1.第四系;2.满克头鄂博组;3.大石寨组砂岩、粉砂岩、板岩等;4.大石寨组大理岩;5.大石寨组安山岩;6.断层;7.中细粒花岗岩;8.肉红色花岗斑岩;9.中粗粒花岗岩;10.花岗斑岩脉;11.闪长玢岩脉;12.蚀变带;13.铅锌矿体;14.矽卡岩;15.钼矿体;16.地名;17.见钼矿化钻孔位置;18.钻孔;19.勘探线
Fig. 1. Geological sketch map of Hongling lead-zinc polymetallic deposit and Drilling section geological map
表 1 红岭矿区辉钼矿Re、Os含量及Re-Os模式年龄
Table 1. Re and Os contents and Re-Os model ages of molybdenite within Hongling molybdenum-tungsten deposit
样号 样重(g) Re(10-9) Os普(10-9) 187Re(10-9) 187Os(10-9) 模式年龄(Ma) HLZ-1 0.0579 1 224.32±0.68 0.012 5±0.000 8 140.99±0.43 0.329 2±0.002 6 140.0±1.8 HLZ-2 0.0541 2 241.77±0.73 0.013 4±0.000 8 151.96±0.46 0.354 8±0.002 8 140.0±1.8 HLZ-3 0.0722 2 94.98±0.33 0.003 5±0.001 9 59.68±0.21 0.139 2±0.001 7 139.9±1.8 HLZ-4 0.0511 2 235.56±0.70 0.002 2±0.000 4 148.06±0.44 0.349 4±0.007 0 141.5±3.2 HLZ-5 0.0566 9 121.12±0.39 0.004 5±0.002 4 76.07±0.24 0.177 4±0.002 2 139.9±2.3 HLX-1 0.0509 2 4 722.89±15.87 0.103 4±0.000 7 2 968.43±9.97 7.113 5±0.031 8 143.7±3.6 -
[1] Bai, D.M., Fu, G.L., Nie, F.J., et al., 2011. Integrated Ore-Prospecting Model for the Skarn Polymetallic Deposit in Southeastern Inner Mongolia. Journal of Jilin University (Earth Science Edition), 41(6): 1968-1976 (in Chinese with English abstract). http://www.researchgate.net/publication/288737558_Integrated_ore-prospecting_model_for_the_skarn_polymetallic_deposit_in_southeastern_Inner_Mongolia [2] Bai, D.M., Liu, G.H., 1996. Application of Geologic, Geophysical, Geochemical Prospesting Method in the Haobugao Pb-Zn-Sn-Cu Polymetallic Deposit. Geological Exploration for Non-Ferrous Metals, 5(6): 361-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS606.006.htm [3] Chen, Y.J., Chen, H.Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China: An Overview. Ore Geology Reviews, 31(1-4): 139-169. doi: 10.1016/j.oregeorev.2005.01.001 [4] Du, A.D., He, H.L., Yin, N.W., et al., 1994. A Study on the Rhenium-Osmium Geochronometry of Molybdenites. Acta Geologica Sinica, 68(4): 339-347 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/80008098606 [5] Du, A.D., Zhao, D.M., Wang, S.X., et al., 2001. Precise Re-Os Dating for Molybdenite by ID-NTIMS with Carius Tube Sample Preparation. Rock and Mineral Analysis, 20(4): 247-252 (in Chinese with English abstract). [6] Li, H.Y., Mao, J.W., Sun, Y.L., et al., 1996. Re-Os Isotopic Chronology of Molybdenites in the Shizhuyuan Polymetallic Tungsten Deposit, Southern Hunan. Geological Review, 42(3): 261-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199603010.htm [7] Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. The Regional Metallogeny of Da Hinggan Ling, China. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dxqy200401036.htm [8] Luck, J.M., Allegre, C.J., 1982. The Study of Molybdenites through the 187Re-187Os Chronometer. Earth Planet. Sci. Lett., 61: 291-296. doi: 10.1016/0012-821X(82)90060-7 [9] Ludwig, K., 2003. Isoplot/Ex3.0: A Geochronogical Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [10] Ma, X.H., Chen, B., Lai, Y., et al., 2009. Petrogenesis and Mineralization Chronology Study on the Aolunhua Porphyry Mo Deposit, Inner Mongolia, and Its Geological Implications. Acta Petrologica Sinica, 25(11): 2939-2950 (in Chinese with English abstract). [11] Mao, J.W., Du, A.D., Seltmann, R., et al., 2003a. Re-Os Ages for the Shameika Porphyry Mo Deposit and the Lipovy Lograre Metal Pegmatite, Central Urals, Russia. Mineralium Deposita, 38(2): 251-257. doi: 10.1007/s00126-002-0331-2 [12] Mao, J.W., Wang, Y.T., Lehmann, B., et al., 2006. Molybdenite Re-Os and Albite 40Ar/39Ar Dating of Cu-Au-Mo and Magnetite Porphyry Systems in the Yangtze River Valley and Metallogenic Implications. Ore Geology Reviews, 29(3-4): 307-324. doi: 10.1016/j.oregeorev.2005.11.001 [13] Mao, J.W., Wang, Y.T., Zhang, Z.H., et al., 2003b. Geodynamic Setting of Mesozoic Large-Scale Mineralization in North China and Adjacent Areas: Implication from the Highly Precise and Accurate Ages of Metal Deposits. Science in China (Series D), 46(8): 838-851. doi: 10.3969/j.issn.1674-7313.2003.08.008 [14] Mao, J.W., Zhang, Z.C., Zhang, Z.H., et al., 1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. doi: 10.1016/S0016-7037(99)00165-9 [15] Shao, J.A., Zhang, L.Q., Xiao, Q.H., et al., 2005. Rising of Da Hinggan Mts in Mesozoic: A Possible Mechanism of Intracontinental Orogeny. Acta Petrologica Sinica, 21(3): 789-794 (in Chinese with English Abstract). [16] Stein, H.J., Markey, R.J., Morgan, J.W., et al., 2001. The Remar Kable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 13(6): 479-486. doi: 10.1046/j.1365-3121.2001.00395.x [17] Wang, L.J., Wang, J.B., Wang, Y.W., et al., 2004. Eastern Inner Mongolia and Oxygen Isotope Characteristics of Granite Related to the Skarn Type Deposit—Take Haobugao Deposit as an Example. Geological Review, 50: (5): 513, 560 (in Chinese). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200412004020.htm [18] Xie, G.Q., Zhao, H.J., Zhao, C.S., et al., 2009. Re-Os Dating of Molybdenite from Tonglüshan Ore District in Southeastern Hubei Province, Middle-Lower Yangtze River Belt and Its Geological Significance. Mineral Deposits, 28(3): 227-239 (in Chinese with English abstract). http://www.researchgate.net/publication/313149240_Re-Os_dating_of_molybdenite_from_Tonglushan_ore_district_in_southeastern_Hubei_Province_Middle-Lower_Yangtze_River_belt_and_its_geological_significance [19] Yan, C., Sun, Y., Lai, Y., et al., 2011. LA-ICP-MS Zircon U-Pb and Molybdenite Re-Os Isotope Ages and Metallogenic Geodynamic Setting of Banlashan Mo Deposit, Inner Mongolia. Mineral Deposits, 30(4): 616-634 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201104004.htm [20] Yang, Y., Gao., F. H, Chen, J.S., et al., 2012. Zircon U-Pb Ages of Mesozoic Volcanic Rocks in Chifeng Area. Journal of Jilin University (Earth Science Edition), 42(Suppl. 2): 257-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ2012S2029.htm [21] Yang, Z.F., Luo, Z.H., Lu, X.X., et al., 2011. Discussion on Significance of Re Content of Molybdenite in Tracing Source of Metallogenic Materials. Mineral Deposits, 30(4): 654-674 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201104007.htm [22] Yao, F.L., Sun, F.Y., 2006. Mineral Deposits. Geological Publishing House, Beijing (in Chinese with English abstract). [23] Yao, J.M., Hua, R.M., Qu, W.J., et al., 2007. Re-Os Isotope Dating of Molybdenites in the Huangshaping Pb-Zn-W-Mo Polymetallic Deposit, Hunan Province, South China and Its Geological Significance. Science in China (Ser. D), 37(4): 471-477 (in Chinese). [24] Yao, M.J., Liu, J.J., Zhai, D.G., et al., 2012. Sulfur and Lead Isotopic Compositions of the Polymetallic Deposits in the Southern Daxing'anling: Implications for Metal Sources. Journal of Jilin University (Earth Science Edition), 42(2): 362-373 (in Chinese with English abstract). http://www.researchgate.net/publication/282507766_Sulfur_and_lead_isotopic_compositions_of_the_polymetallic_deposits_in_the_Southern_Daxing'anling_Implications_for_metal_sources [25] Zhai, D.G., Liu, J.J., Wang, J.P., et al., 2009. Re-Os Isotopic Chronology of Molybdenite from the Taipinggou Porphyry-Type Molybdenum Deposit in Inner Mongolia and Its Geological Significance. Geoscience, 23(2): 262-268 (in Chinese with English abstract). [26] Zhang, D.Q., Zhao, Y.M., 1993. Proceeding of Copper-Polymetallic Deposits in the Da Xinggan Mountains and Its Adjacent Areas. Deological Publishing House, Beijing (in Chinese with English abstract). [27] Zhang, J.H., 2009. Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China (Dissertation). China University of Geoscience, Wuhan, 1-63 (in Chinese with English abstract). [28] Zhang, Q., Jin, W.J., Li, C.D., et al., 2009. Yanshanian Large-Scale Magmatism and Lithosphere Thinning in Eastern China: Relation to Large Igneous Province. Earth Science Frontiers, 16(2): 21-51 (in Chinese with English abstract). http://www.researchgate.net/publication/284562276_Yanshanian_large-scale_magmatism_and_lithosphere_thinning_in_Eastern_China_relation_to_large_igneous_province [29] Zhao, Y.M., Zhang, D.Q., 1997. Metallogenic Regularity and Prospective Evaluation of the Copper-Polymetallic Deposits in Daxinganling and Adjacent Areas. Seismological Press, Beijing (in Chinese). [30] Zhou, Z.H., Lü, L.S., Feng, J.R., et al., 2010. Molybdenite Re-Os Ages of Huanggang Skarn Sn-Fe Deposit and Their Geological Significance, Inner Mongolia. Acta Petrologica Sinica, 26(3): 667-679 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201003003.htm [31] 白大明, 付国立, 聂风军, 等, 2011. 内蒙古东南部矽卡岩型金属矿床的综合找矿模式. 吉林大学学报(地球科学版), 41(6): 1968-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106026.htm [32] 白大明, 刘光海, 1996. 浩布高铅锌铜锡矿床地物化综合找矿模式探讨. 有色金属矿产与勘查, 5(6): 361-367. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS606.006.htm [33] 杜安道, 何红蓼, 殷宁万, 等, 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究. 地质学报, 68(4): 339-347. doi: 10.3321/j.issn:0001-5717.1994.04.005 [34] 杜安道, 赵敦敏, 王淑贤, 等, 2001. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄. 岩矿测试, 20(4): 247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002 [35] 李红艳, 毛景文, 孙亚利, 等, 1996. 柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究. 地质论评, 42(3): 261-267. doi: 10.3321/j.issn:0371-5736.1996.03.011 [36] 刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024 [37] 马星华, 陈斌, 赖勇, 等, 2009. 内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义. 岩石学报, 25(11): 2939-2950. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911025.htm [38] 邵济安, 张履桥, 肖庆辉, 等, 2005. 中生代大兴安岭的隆起——一种可能的陆内造山机制. 岩石学报, 21(3): 789-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503019.htm [39] 王莉娟, 王京彬, 王玉往, 等, 2004. 内蒙古东部与矽卡岩型矿床有关的花岗岩氧同位素特征——以浩布高矿床为例. 地质评论, 50(5): 513, 560. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200405010.htm [40] 谢桂青, 赵海杰, 赵财胜, 等, 2009. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 28(3): 227-239. doi: 10.3969/j.issn.0258-7106.2009.03.001 [41] 闫聪, 孙艺, 赖勇, 等, 2011. 内蒙古半拉山钼矿LA-ICP-MS锆石U-Pb与辉钼Re-Os年龄及其成矿动力学背景. 矿床地质, 30(4): 616-634. doi: 10.3969/j.issn.0258-7106.2011.04.003 [42] 杨扬, 高福红, 陈井胜, 等, 2012. 赤峰地区中生代火山岩锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(增刊2): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2029.htm [43] 杨宗锋, 罗照华, 卢欣祥, 等, 2011. 关于辉钼矿中Re含量示踪来源的讨论. 矿床地质, 30(4): 654-674. doi: 10.3969/j.issn.0258-7106.2011.04.006 [44] 姚凤良, 孙丰月, 2006. 矿床学教程. 北京: 地质出版社. [45] 姚军明, 华仁民, 屈文俊, 等, 2007. 湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义. 中国科学(D辑), 37(4): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200704004.htm [46] 要梅娟, 刘家军, 翟德高, 等, 2012. 大兴安岭南段多金属成矿带硫、铅同位素组成及其地质意义. 吉林大学学报(地球科学版), 42(2): 362-373. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202012.htm [47] 翟德高, 刘家军, 王建平, 等, 2009. 内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义. 现代地质, 23(2): 262-268. doi: 10.3969/j.issn.1000-8527.2009.02.010 [48] 张德全, 赵一鸣, 1993. 大兴安岭及邻区铜多金属矿床论文集. 北京: 地质出版社. [49] 张吉衡, 2009. 大兴安岭中生代火山岩年代学及地球化学研究(博士学位论文). 武汉: 中国地质大学, 1-63. [50] 张旗, 金惟俊, 李承东, 等, 2009. 中国东部燕山期大规模岩浆活动与岩石圈减薄: 与大火成岩省的关系. 地学前缘, 16(2): 21-51. doi: 10.3321/j.issn:1005-2321.2009.02.002 [51] 赵一鸣, 张德全, 1997. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价. 北京: 地震出版社. [52] 周振华, 吕林素, 冯佳睿, 等, 2010. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re-Os年龄及其地质意义. 岩石学报, 26(3): 667-679. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003003.htm