Mineralogy and Metallogenic Mechanism of Weilasituo and Bairendaba Deposits, Inner Mongolia, China
-
摘要: 维拉斯托-拜仁达坝锌铜多金属矿床为近几年大兴安岭中南段西坡发现的较大的2个银多金属矿床,主要对2个矿床矿石矿物组合分析和对比,对主要的矿石矿物组合进行扫描电子显微镜-能谱分析和电子探针分析显示:从早期到晚期,矿物组合从高温钨酸盐和氧化物-复硫化物-硫化物-低温含锑硫盐矿物(锑化物);银的赋存状态主要为可见银矿物,其次为晶格银(类质同象)和次显微包裹银,其中生成顺序依次为含银黝铜矿+银锑黝铜矿+黝锑银矿-辉锑铅银矿+柱硫锑铅银矿+深红银矿+锑银矿.根据不同成矿阶段的矿物组合和流体包裹体特征得出:成矿早期在氧化偏酸性环境下,W、Sn等以钨酸、钨酸盐等形式迁移,Zn2+、Pb2+、Cu+等金属离子以氯络合物形式迁移;随着黑钨矿气化沉淀及成矿流体物理化学条件的变化,成矿中-晚期成矿环境变为弱碱性还原条件,成矿流体中金属离子以硫氢络合物迁移为主,伴着温度降低和围岩的水-岩作用,硫氢络合物分解,导致磁黄铁矿等硫化物、硫锑银矿物、硫锑铅矿等依次沉淀.Abstract: Weilasituo and Bairendaba are two large-scale silver polymetallic deposits, discovered in the western slope of the south and central sections of Great Hinggan Mountains in recent years. This study focuses on identifying and analyzing the mineral associations and occurrence of silver minerals using scanning electron microscopy-energy dispersive spectrometry and electron microprobe. The analyses suggest that mineral associations change from tungstate and oxide, to diatomic sulphide, to simple sulphide, to antimony sulfosalt mineral, to antimonide with decreasing temperature based on the microscopy observations. The silvers contained in the ore occur in several forms, including mainly visible silver minerals, followed by the lattice silver (isomorphous substitution) and sub-micron inclusion silver. The mineral sequence of visible silver's formation is Ag-bearing tetrahedrite-argentian tetrahedrite-freibergite-diaphorite-freieslebenite-pyrargyrite-dyscrasite. Ag occurs in lattice of chalcopyrite, bornite, chalcocite, pyrite and galena in isomorphism in small amount, and also as the microscopic wrappage in galena. The results, combined with the characteristics of mineral association and fluid inclusions in different mineralizing stages, indicate that W and Sn are transported as wolframic acid and tungstate at the early high-temperature meta-acid oxidizing environment, while Zn2+, Pb2+, Cu+ and other metalions are transported as chloride complexes. After wolframite's precipitation and the changes of metallogenetic fluid physical and chemical condition, the metallogenetic environment becomes slightly alkaline and reductive, and Zn2+, Cu+ and other metalions form HS- complexes. The continuous drop of temperature and water-rock interaction lead to the separation of Zn2+, Cu+ with HS- to form pyrrhotite, sphalerite etc.. In late phases, Ag+ can combine Sb3+, Cu+, Pb2+, Sb3-, S2- etc., which results in multiple silver antimony sulfide minerals, boulangerite etc..
-
Key words:
- Weilasituo-Bairendaba /
- occurrence of silver /
- metallogenic mechanism /
- metallogenic endmember /
- deposits /
- mineralogy
-
图 1 维拉斯托-拜仁达坝矿床区域地质简图
a.区域构造略图;b.区域地质简图(据刘建明等,2004修改);1.第四系;2.上侏罗统满克头鄂博组;3.下侏罗统万宝组;4.上二叠林西组;5.下二叠大石寨组;6.上石炭统阿木山组;7.上石炭统本巴图组;8.下古生界宝音图组;9.燕山期花岗岩;10.燕山期花岗斑岩;11.海西期闪长岩;12.断裂;13.复背斜;14.矿区范围;15.矿点和主矿脉
Fig. 1. Regional sketch geological map of Weilasituo-Bairemdaba deposits
图 2 维拉斯托-拜仁达坝矿床矿区地质图
图a为维拉斯托矿床,据内蒙古自治区克什克腾旗拜仁达坝矿区银多金属矿详查报告,内蒙古自治区第九地质矿产勘查开发院,2003;其中:1.第四系;2.下古生界黑云斜长片麻岩;3.海西期石英闪长岩;4.矿脉及编号;5.石英脉;6.闪长岩脉.图b为拜仁达坝矿床改自常勇和赖勇,2010;其中:1.第四系;2.下元古界黑云斜长片麻岩;3.海西期石英闪长岩;4.燕山期花岗岩;5.斜长角闪岩脉;6.褐铁矿化带;7.石英脉;8.花岗岩脉;9.矿体及编号;10.推测的北西向断裂
Fig. 2. The Geological sketch map of Weilasituo and Bairendaba deposits
图 3 维拉斯托-拜仁达坝矿床矿化特征和矿石构造
a~d.维拉斯托矿床;e~i.拜仁达坝矿床;a.石英脉型矿石围岩角岩化-辉钼矿矿化-毒砂矿化;b.1175中段石英脉型钨锡多金属矿脉;c.1225中段锌铜多金属矿脉;d.1275中段胶结角砾状构造,角砾状锌铜矿石被晚期绢云母胶结;e.早期硅化蚀变-Q-Apy-Sp;f.矿脉和蚀变,从右到左依次为绿泥石化-Apy+Q-早期Po+Sp-中期块状Sp;g.闪锌矿斑点呈定向以及受构造应力影响,定向性较好;h.中期脉状闪锌矿化,围岩蚀变距矿脉越远越弱;i1.晚期绢云母萤石胶结角砾状铅锌矿石;i2.晚期萤石和绢云母胶结锌铜角砾状矿石,黄铜矿细脉穿插闪锌矿;Sp.闪锌矿(黑色);Apy.毒砂(钢灰色);Po.磁黄铁矿(暗黑铜黄色-褐锖色);Ccp.黄铜矿(黄铜黄色-蓝紫褐色的斑状锖色);Gn.方铅矿(铅灰色);Brs.辉钼矿(亮铅灰色);Wol.黑钨矿;Cst.锡石;Q.石英;Fl.萤石(紫色);Ms.白云母类(浅黄色)
Fig. 3. Features of mineralization and ores' structures in Weilasituo and Bairendaba
图 4 维拉斯托-拜仁达坝矿床主要矿物组成及其结构关系
a, b1, c1, d, f, i, j, l.维拉斯托矿床照片(WL);b2, c2, e, g, h, k.拜仁达坝矿床照片(BR).a.WL-31,黑钨矿-白钨矿-斜方砷铁矿,且黑钨矿分布在白钨矿裂隙中;b.WL-33;b1.斜方砷铁矿镶嵌在锡石中,自然铋被辉铋矿交代溶蚀;b2.方铅矿交代稍早的浅色闪锌矿和黝锡;c.WL-13&BR-4,矿物的生成交代顺序为早期毒砂和胶状黄铁矿-磁黄铁矿-铁闪锌矿;d.WL-43,铁闪锌矿包围早期自形晶毒砂;e.BR-21,铁闪锌矿中的磁黄铁矿和黄铜矿的固溶体出溶结构;f.WL-9,磁黄铁矿和黄铜矿中的星状闪锌矿出溶结构;g.BR-10,黄铜矿穿插铁闪锌矿的网脉结构;h.BR-36,方铅矿中蠕虫状银锑黝铜矿和辉锑铅银矿;i.WL-39,方铅矿中的柱硫锑铅银矿的出溶结构和银锑黝铜矿中方铅矿的不混溶结构;j.WL-55,黝锑银矿中的黄铜矿和方铅矿的不混溶结构,深红银矿交代黝锑银矿分布在其边界;k.BR-38,稍晚脆硫锑铅矿交代稍早银锑黝铜矿;l.WL-69,针状硫锑铅矿穿插稍早黄铜矿;Wol.黑钨矿;Sh.白钨矿;Lo.斜方砷铁矿;Cst.锡石;Bsm.自然铋;Bmt.辉铋矿;Apy.毒砂;c-Py.胶状黄铁矿;Po.磁黄铁矿;Sp.闪锌矿;Stn.黝锡矿;Ccp.黄铜矿;Gn.方铅矿;Ag-Td.银锑黝铜矿;Frb.黝锑银矿;Dp.辉锑铅银矿;Frs.柱硫锑铅银矿;Pyr.深红银矿;Jmt.脆硫锑铅矿;Blr.硫锑铅矿;Q.石英
Fig. 4. Composition of the main minerals and their texture relationships in Weilasituo and Bairendaba
图 6 主要银矿物的背散射电子图像
a.(WL-11)辉锑铅银矿和黝锑银矿呈不规则状分布在方铅矿中,黝锑银矿中方铅矿的不混溶包裹物;b.(WL-11)黝锑银矿包裹硫银锡矿,呈不规则状分布;c.(WL-11)深红银矿和黝锑银矿分布在方铅矿与石英边界;d.(BR-13)银黝铜矿分布在黄铜矿和方铅矿边界;Caf.硫银锡矿,其他矿物代号同图 4
Fig. 6. BSE images of the main silver minerals
图 7 维拉斯托-拜仁达坝矿床成矿元素相关系数矩阵
左图为拜仁达坝矿床1号矿体,数据王力和孙丰月,2008;右图为维拉斯托矿床1号矿体,数据引自内蒙古自治区克什克腾旗维拉斯托矿区铜锌多金属矿详查报告内蒙古自治区第九地质矿产勘查开发院,2003
Fig. 7. Metallicelement correlation coefficients of Weilasituo and Bairendaba deposits
表 1 维拉斯托-拜仁达坝矿床矿石矿物成分电子探针数据
Table 1. EMP data of ore mineral from the Weilasituo and Bairendaba deposits
序号 矿物名称 样品编号 O Mg Fe Ca Mn W Sn Total 分子式 1 黑钨矿 WL-65-1 20.71 b.d. 14.39 b.d. 4.72 58.28 b.d. 98.106 (Fe0.813, Mn0.271)WO4 2 黑钨矿 WL-65-2 20.97 b.d. 14.32 0.05 4.75 59.23 b.d. 99.323 (Fe0.795, Mn0.269)WO4 3 白钨矿 WL-31-1 22.38 b.d. b.d. 15.21 b.d. 62.45 b.d. 100.037 Ca1.117WO4 4 白钨矿 WL-31-2 22.49 0.03 b.d. 15.17 b.d. 62.87 b.d. 100.555 Ca1.107WO4 5 锡石 WL-33-1 21.66 0.03 0.06 4.62 b.d. b.d. 73.37 99.733 (CaO)0.186-SnO2 6 锡石 WL-33-2 22.01 0.05 0.03 4.68 b.d. b.d. 74.00 100.762 (CaO)0.187-SnO2 序号 矿物名称 样品编号 As Fe S Ni Pb Cu Bi Co Ag Zn Sn Cd Sb Total 分子式 7 斜方砷铁矿 WL-33-5 71.750 27.640 0.304 0.007 b.d. b.d. b.d. 0.109 b.d. 0.011 b.d. b.d. b.d. 99.821 FeAs1.935(S0.019) 8 斜方砷铁矿 WL-31-3 73.020 27.920 0.286 0.019 b.d. 0.016 b.d. 0.035 0.029 b.d. 0.005 b.d. b.d. 101.330 FeAs1.94(S0.02) 9 辉铋矿 WL-38-12 0.709 0.021 12.060 0.028 0.769 b.d. 80.810 0.002 0.033 0.087 b.d. b.d. b.d. 94.519 Bi2S3(-Bi2O3) 10 自然铋 WL-33-3 0.684 1.580 0.848 b.d. 0.740 b.d. 96.010 0.039 b.d. 0.009 b.d. b.d. b.d. 99.910 Bi 11 自然铋 WL-33-9 0.203 0.041 b.d. b.d. 0.181 0.032 91.790 b.d. 0.056 0.065 b.d. b.d. b.d. 92.367 Bi(-Bi2O3) 12 毒砂 WL-33-8 45.980 33.970 18.730 b.d. 0.142 b.d. b.d. 0.206 0.043 0.012 0.043 0.084 b.d. 99.210 FeAs1.009S0.961 13 毒砂 WL-38-11 43.860 34.260 19.880 b.d. 0.099 0.052 b.d. 0.079 b.d. 0.032 b.d. 0.004 b.d. 98.266 FeAs0.954S1.011 14 早-方黝锡矿 WL-31-4 b.d. 3.470 28.390 b.d. 0.029 29.740 0.038 0.001 b.d. 10.960 25.330 0.011 b.d. 97.970 Cu2.194(Fe0.291, Zn0.786)1.077SnS4.15 15 早-方铅矿 WL-31-5 0.032 0.042 12.140 0.014 85.010 b.d. b.d. 0.031 0.404 0.001 0.040 0.353 b.d. 98.066 Pb1.08S(含Ag) 16 浅色闪锌矿 WL-33-7 b.d. 0.615 32.560 0.015 0.161 0.030 b.d. 0.002 b.d. 65.000 b.d. 0.691 b.d. 99.074 ZnS 17 浅色闪锌矿 WL-10-3 b.d. 2.400 33.920 b.d. 0.025 0.200 b.d. 0.024 b.d. 63.490 b.d. b.d. 0.030 100.089 Zn0.92Fe0.04S 18 黄铁矿 WL-31-9 0.332 46.780 51.420 0.010 0.258 0.028 b.d. 0.102 0.054 0.038 b.d. b.d. b.d. 99.022 FeS2 19 胶状黄铁矿 WL-13-1 0.001 46.670 52.370 0.038 0.213 0.045 b.d. 0.093 0.033 0.025 b.d. b.d. 0.030 99.517 FeS1.955 20 胶状黄铁矿 WL-13-2 b.d. 46.550 41.570 0.014 b.d. 0.004 b.d. 0.081 b.d. 0.015 0.040 0.048 b.d. 88.322 FeS1.56 21 胶状黄铁矿 WL-13-3 0.035 46.630 51.290 0.006 0.296 b.d. b.d. 0.079 0.021 0.014 0.012 0.011 0.011 98.404 FeS1.916 22 胶状黄铁矿 WL-13-4 0.119 50.580 33.150 0.010 0.232 0.033 b.d. 0.074 b.d. b.d. b.d. b.d. 0.024 84.222 FeS1.14 23 胶状黄铁矿 WL-13-5 0.055 46.740 51.360 b.d. b.d. 0.045 b.d. 0.085 b.d. 0.020 b.d. b.d. 0.160 98.466 FeS1.914 24 铁闪锌矿 WL-54-4 b.d. 10.400 34.040 0.012 0.005 b.d. b.d. b.d. b.d. 55.250 0.093 b.d. 0.034 99.834 Zn0.796Fe0.175S 25 铁闪锌矿 WL-57-3 0.089 10.450 33.520 0.014 0.195 b.d. b.d. 0.019 b.d. 54.520 0.014 b.d. b.d. 98.820 Zn0.798Fe0.179S 26 磁黄铁矿 WL-9-2 b.d. 60.130 39.890 0.040 0.112 0.061 b.d. 0.093 b.d. 0.008 0.100 0.022 b.d. 100.456 Fe0.865S 27 磁黄铁矿 WL-5-5 b.d. 60.960 38.010 0.018 0.122 b.d. b.d. 0.114 0.005 b.d. b.d. 0.018 b.d. 99.247 Fe0.920S 28 黄铜矿 WL-11-12 0.020 28.800 32.220 b.d 2.690 32.920 b.d 0.030 1.850 0.330 b.d. b.d. 1.150 100.010 CuFeS2 29 (Ag)黄铜矿 WL-55-3 0.008 24.700 31.270 0.026 0.197 29.140 b.d 0.030 9.630 0.315 b.d. b.d. 3.160 98.475 Cu0.94Fe0.908Ag0.180Sb0.06S2 30 方铅矿 WL-54-1 b.d 0.035 12.610 b.d 86.660 0.015 b.d 0.003 0.277 0.516 0.004 0.453 0.263 100.837 PbS(含Ag, Zn, Cd) 31 (Ag)方铅矿 WL-57-5 b.d b.d 13.500 0.016 79.350 0.038 b.d 0.029 3.600 b.d. b.d. 0.195 3.960 100.688 Pb0.91Ag0.08Sb0.08S 32 含银黝铜矿 WL-10-1 2.430 2.350 24.200 0.037 b.d 36.680 3.850 0.004 1.920 4.960 b.d. b.d. 21.350 97.780 (Cu, Ag)10.037(Fe, Zn)2(As, Sb)3.815S12.733 33 含银黝铜矿 WL-10-2 3.410 2.460 24.950 0.019 0.009 37.270 4.030 b.d. 1.870 4.800 b.d. b.d. 20.260 99.078 (Cu, Ag)10.243(Fe, Zn)2(As, Sb)3.922S13.200 34 辉锑铅银矿 WL-54-2 0.060 0.082 17.790 b.d 30.720 0.002 b.d 0.018 23.560 0.404 b.d. b.d. 27.990 100.625 Ag2.96Pb2Sb3.11S7.52 35 辉锑铅银矿 WL-57-1 0.105 b.d 17.870 b.d 30.550 b.d b.d b.d. 23.790 0.002 b.d. b.d. 27.290 99.607 Ag3.01Pb2Sb3.1S7.61 36 黝锑银矿 WL-11-1 0.190 4.690 20.100 b.d 0.240 13.100 b.d b.d 34.020 1.230 b.d. b.d. 26.420 100.010 Ag3.07Cu2.00(Fe, Zn)(As, Sb)2.11S6.09 37 黝锑银矿 WL-11-7 b.d 4.570 20.030 b.d 0.242 13.630 0.050 0.036 33.700 1.700 b.d. b.d. 26.150 100.108 Ag2.90Cu1.99(Fe, Zn)(As, Sb)1.99S5.79 38 黝锑银矿 WL-57-2 0.034 4.100 18.550 b.d 18.990 10.400 b.d 0.015 28.190 0.696 b.d. b.d. 20.780 101.755 Ag2.90Cu1.99(Fe, Pb)(As, Sb)1.99S5.79 39 硫银锡矿 WL-11-2 0.057 0.041 18.310 b.d 0.316 0.149 b.d b.d 67.810 0.079 11.960 b.d. b.d. 98.723 Ag48.085Sn7.711S43.7 40 黝锡矿 WL-55-5 0.077 12.400 29.090 0.009 0.026 29.010 b.d b.d 0.709 1.020 25.840 b.d. b.d. 98.181 Cu2.097Fe1.02SnS4.168 41 深红银矿 WL-11-3 b.d b.d 16.880 b.d 0.089 0.010 b.d 0.026 58.590 0.336 b.d. b.d. 21.490 97.421 Ag2.98SbS3.08 42 深红银矿 WL-55-4 0.121 0.093 16.570 0.008 0.152 0.183 b.d 0.024 58.080 b.d. b.d. b.d. 23.310 98.540 Ag2.70SbS2.81 43 柱硫锑铅银矿 WL-57-4 0.114 0.036 16.800 0.006 44.350 b.d. b.d b.d 18.330 0.015 b.d. b.d. 20.900 100.553 PbAgSbS3 44 硫锑铅矿 WL-69-5 0.125 0.099 17.470 b.d 54.600 0.059 b.d b.d 0.021 0.111 b.d. 0.185 24.350 97.020 Pb5Sb4S11 45 硫锑铅矿 WL-69-6 0.101 0.612 17.740 b.d 54.730 0.169 b.d 0.008 b.d. b.d. b.d. 0.230 25.440 99.030 Pb5Sb4S11 46 毒砂 BR-4-9 44.870 34.830 20.820 b.d b.d 0.026 b.d 0.099 b.d. 0.041 b.d. b.d. 0.212 100.897 FeAsS 47 毒砂 BR-7-5 44.030 35.230 20.130 b.d 0.145 0.004 b.d 0.047 b.d. 0.028 0.005 b.d. 0.076 99.696 FeAsS 48 磁黄铁矿 BR-41-1 0.038 59.080 39.020 b.d 0.154 0.001 b.d 0.102 0.010 0.046 b.d. b.d. 0.062 98.514 Fe0.869S 49 磁黄铁矿 BR-4-1 b.d 47.120 52.580 b.d. 0.060 b.d b.d 0.060 b.d. 0.160 0.010 b.d. b.d. 99.980 Fe0.896S(出溶物) 50 磁黄铁矿 BR-4-2 b.d 59.960 39.100 0.044 0.112 b.d b.d 0.128 0.003 1.090 0.022 0.014 0.041 100.514 Fe0.880S 51 铁闪锌矿 BR-4-3 b.d 10.130 33.230 b.d 0.275 0.004 b.d 0.047 b.d. 54.870 b.d. 0.007 0.038 98.600 Zn0.810Fe0.175S 52 黄铁矿 BR-7-6 0.005 44.800 49.190 0.010 0.119 0.003 b.d 0.099 0.026 0.104 b.d. b.d. 0.069 94.424 FeS1.913 53 黄铁矿 BR-7-4 b.d 46.860 52.710 b.d 0.100 0.010 b.d 0.057 0.012 0.012 0.013 0.035 0.001 99.809 FeS2 54 胶状黄铁矿 BR-4-4 b.d 46.340 51.560 b.d 0.117 b.d b.d 0.079 0.040 0.045 0.012 0.030 b.d. 98.222 FeS1.94 55 胶状黄铁矿 BR-4-5 b.d 45.680 49.040 b.d 0.128 b.d b.d 0.049 0.046 0.066 b.d. b.d. b.d. 95.010 FeS1.87 56 胶状黄铁矿 BR-4-6 b.d 46.510 50.580 0.010 0.137 b.d b.d 0.076 0.003 b.d. b.d. b.d. 0.045 97.361 FeS1.89 57 胶状黄铁矿 BR-4-7 0.022 45.730 50.770 0.010 0.098 b.d b.d 0.068 b.d. 0.051 b.d. b.d. 0.060 96.808 FeS1.93 58 胶状黄铁矿 BR-4-8 0.003 46.030 51.680 b.d 0.104 0.049 b.d 0.089 0.007 0.058 b.d. b.d. 0.015 98.036 FeS1.95 59 黄铜矿 BR-36-4 b.d 30.390 34.300 b.d 0.209 34.720 b.d 0.036 0.037 0.003 0.232 b.d. b.d. 99.927 CuFeS2 60 (Ag)黄铜矿 BR-13-4 b.d. 28.470 33.350 0.020 0.130 31.740 b.d 0.080 6.530 0.100 0.150 0.060 0.030 100.660 Cu0.881Fe0.900Ag0.107S2 61 黝锡矿 BR-14-2 b.d 11.990 30.180 0.030 0.330 30.150 b.d 0.020 1.810 0.670 25.230 0.060 b.d. 100.460 Cu2.016(Fe0.912Zn0.044)Sn0.903S4 62 方黝锡矿 BR-41-3 b.d 12.320 29.720 b.d 0.251 29.200 b.d 0.064 0.049 2.100 26.670 b.d. b.d. 100.374 Cu1.983(Fe0.952Zn0.138)Sn0.969S4 63 方铅矿 BR-41-4 0.010 b.d 12.660 0.008 86.010 0.017 b.d b.d. 0.206 b.d. 0.053 0.102 0.110 99.176 PbS 64 银锑黝铜矿 BR-10-1 0.196 5.710 23.660 b.d 0.072 27.280 0.143 b.d. 15.560 2.010 b.d. b.d. 26.870 101.501 (Cu, Ag)10.10(Fe, Zn)2.35(As, Sb)3.93S13 65 银锑黝铜矿 BR-38-2 0.136 5.120 22.850 b.d 0.143 23.830 b.d b.d. 19.120 1.430 b.d. b.d. 27.310 99.939 (Cu, Ag)10.07(Fe, Zn)2.06(As, Sb)4.12S13 66 黝锑银矿 BR-14-1 0.023 5.600 21.820 b.d 1.050 20.990 b.d b.d. 22.520 0.458 b.d. 0.132 27.100 99.692 (Ag, Cu)10.30(Fe, Zn)2.15(As, Sb)4.25S13 67 黝锑银矿 BR-41-2 0.104 5.610 22.350 b.d 0.205 21.180 0.007 0.011 23.360 0.956 b.d. 0.057 27.920 101.760 (Ag, Cu)10.25(Fe, Zn)2.16(As, Sb)4.3S13 68 黝锑银矿 BR-13-3 0.144 8.320 22.690 0.012 0.056 21.340 b.d. b.d. 23.240 0.718 b.d. 0.123 23.110 99.753 (Ag, Cu)10.124(Fe, Zn)2.94(As, Sb)3.48S13 69 脆硫锑铅矿 BR-38-1 0.154 2.590 20.450 0.011 39.260 0.021 b.d. b.d. b.d. 0.056 b.d. 0.117 34.980 97.639 Pb2Pb2FeSb6S14 70 脆硫锑铅矿 BR-38-3 0.111 2.560 20.970 0.001 40.130 0.020 b.d. b.d. b.d. b.d. b.d. 0.130 35.580 99.501 Pb2Pb2FeSb6S14 71 斜辉锑铅矿 BR-36-2 0.099 0.023 16.890 b.d. 60.640 1.150 b.d. b.d. b.d. 0.003 b.d. 0.289 19.960 99.054 Pb13CuSb7S24 注:单位为wt.%;WL代表维拉斯托矿床样品数据;BR代表拜仁达坝矿床样品数据;b.d.表示低于检测限的元素含量. -
[1] Barnes, H.L., 1979. Solubilitics of Ore Minerals. In: Bames, H.L., ed., Geochemistry of Hydrothermal Ore Deposites (2nd ed. ). Wiley-Inter Science, New York, 404-406. [2] Chang, Y., Lai, Y., 2010. Study on Characteristics of Ore-Forming Fluid and Chronology in the Yindu Ag-Pb-Zn Polymetallic Ore Deposit, Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(4): 581-593 (in Chinese with English abstract). http://www.researchgate.net/publication/282415226_Study_on_characteristics_of_ore-forming_fluid_and_chronology_in_the_Yindu_Ag-Pb-Zn_polymetallic_ore_deposit_Inner_Mongolia [3] Gao, J.J., 2007. Geology and Ore-Forming Fluid of Silver-Lead-Zinc Lode Deposit of Shagou, Western Henan Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [4] Giordano, T.H., Barnes, H.L., 1979. Ore Solution Chemistry Ⅵ. Pb-S Solubility in Bisulfide Solutions to 300 ℃. Economic Geology, 74(7): 1637-1646. doi: 10.2113/gsecongeo.74.7.1637. [5] Han, Y.W., Ma, Z.D., Zhang, H.F., et al., 2003. Geochemistry. Geological Publishing House, Beijing (in Chinese). [6] Hayashi, K., Sugaki, A., Kitakaze, A., 1990. Solubility of Sphalerite in Aqueous Sulfide Solutions at Temperatures between 25 and 240 ℃. Geochimica et Cosmochimica Acta, 54(3): 715-725. doi: 10.1016/0016-7037(90)90367-T [7] Huang, C.K., Zhu, Y.S., 2002. Chinese Silver Deposits and Their Space-Time Distribution. Seismological Press, Beijng (in Chinese). [8] Jiang, S.H., Nie, F.J., Liu, Y.F., et al., 2010. Sulfur and Lead Isotopic Compositions of Bairendaba and Weilasituo Silver-Polymetallic Deposits, Inner mongolia. Mineral Deposits, 28(1): 101-112 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=33117129 [9] Li, J.L., Li, S.Y., 1990. The Occurrence State of Silver in Galena in Relation to Antimony and Bismuth in the Baiyinno Deposit, Inner Mongolia. Acta Petrologica et Mineralogica, 9(4): 365-371 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YSKW199004008&dbcode=CJFD&year=1990&dflag=pdfdown [10] Liu, J.J., Xing, Y.L., Wang, J.P., et al., 2010. Discovery of Falkmanite from the Bairendaba Superlarge Ag-Pb-Zn Polymetallic Deposit, Inner Mongolia and Its Origin Significance. Journal of Jilin University (Earth Science Edition), 40(3): 565-572 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201003013.htm [11] Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. The Regional Metallogeny of Da Hinggan Ling, China. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dxqy200401036.htm [12] Liu, Y., Jiang, S.H., Zhang, Z.G., et al., 2011. Mineragraphy of Bairendaba and Weilasituo Silver Polymetallic Deposits in Inner Mongolia. Mineral Deposits, 30(5): 837-854 (in Chinese with English abstract). http://www.researchgate.net/publication/292719441_Mineragraphy_of_Bairendaba_and_Weilasituo_silverpolymetallic_deposits_in_Inner_Mongolia [13] Liu, Y.F., 2009. Metallogenic Study of Bairendaba Ag Polymetallic Deposit in Hexigten Banner, Inner Mongolia (Dissertation). Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [14] Liu, Y.F., Nie, F.J., Jiang, S.H., et al., 2012. Bairendaba Pb-Zn-Ag Polymetallic Deposit in Inner Mongolia: The Mineralization Zoning and Its Origin. Journal of Jilin University (Earth Scicnce Edition), 42(4): 1055-1068 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201204021.htm [15] Pan, X.F., Guo, L.J., Wang, S., et al., 2009. Laser Microprobe Ar-Ar Dating of Biotite from the Weilasituo Cu-Zn Polymetallic Deposit in Inner Mongolia. Acta Petrologica et Mineralogica, 28(5): 473-479 (in Chinese with English abstract). http://www.researchgate.net/publication/308360144_Laser_microprobe_Ar-Ar_dating_of_biotite_from_the_Weilasituo_Cu-Zn_polymetallic_deposit_in_Inner_Mongolia?ev=auth_pub [16] Seward, T.M., 1976. The Stability of Chloride Complexes of Silver in Hydrothermal Solutions up to 350 ℃. Geochimica et Cosmochimica Acta, 40(11): 1329-1341. doi: 10.1016/0016-7037(76)90122-8 [17] Seward, T, M., 1984. The Formation of Lead (Ⅱ) Chloride Complexes to 300 ℃: A Spectrophotometric Study. Geochimica et Cosmochimica Acta, 48(1): 121-134. doi: 10.1016/0016-7037(84)90354-5 [18] Shuai, D.Q., 1990. The Silver-Tetrahedrite and Its Typomorphic Significance from Some Gold-Silver Deposits and Tin-Silver Polymetallic Deposits in South China. Geology of Guangxi, 3(4): 15-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDZ199004002.htm [19] Stefansson, A., Seward, T.M., 2003. Experimental Determination of the Stability and Stoichiometry of Sulphide Complexes of Silver (Ⅰ) in Hydrothermal Solution to 400 ℃. Geochimica et Cosmochimica Acta, 67(7): 1395-1413. doi: 10.1016/S0016-7037(02)01093-1 [20] Sun, F.Y., Wang, L., 2008. Ore-Forming Conditions of Bairendaba Ag-Pb-Zn Polymetallic Ore Deposit, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 38(3): 376-383 (in Chinese with English abstract). [21] Wang, J., Hou, Q.Y., Chen, Y.L. et al., 2010. Fluid Inclusion Study of the Weilasituo Cu Polymetal Deposit in Inner Mongolia. Geoscience, 24(5): 847-855 (in Chinese with English abstract). [22] Wang, L., Sun, F.Y., 2008. Geological Characteristics of Bairendaba Ag-Pb-Zn Polymetallic Ore Deposit in Inner Mongolia. Global Geology, 27(3): 252-259 (in Chinese with English abstract). http://www.researchgate.net/publication/292100243_Geological_characteristics_of_Bairendaba_Ag-Pb-Zn_polymetallic_ore_deposit_in_Inner_Mongolia [23] Wang, Y.Q., Zhao, J.Z., 2008. Transport Form and Precipation Mechanism of W and Sn in the Jiuyishan Tin Orefield in the Central Nanling Region. Geology and Mineral Resources of South China, (1): 7-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC200801002.htm [24] Xiao, L.M., 2005. Discussion on Characteristics and Genesis of Formation of Bairendaba Polymetal Ag Deposit, Chifeng, Inner Mongolia (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [25] Xu, H.F., 2004. Mineral Studies of Bairendaba Multimetal Deposits in Kesheketengqi. Journal of Inner Mongolia Radio and TV University, (2): 26, 41 (in Chinese). [26] Xu, Q.D., Zhou, L., 2004. Ore-Forming Fluid Migration in Relation to Mineralization Zoning in Cu-Polymetallic Mineralization District of Northern Lanping, Yunnan: Evidence from Lead Isotope and Mineral Chemistry of Ores. Mineral Deposits, 23(4): 452-463 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200404004.htm [27] Yan, W., Ouyang, Z.Y., Li, C.Y., et al., 1994. Mineral Chemistry of Tetrahedrites from Lanping-Simao Vein Copper Deposits, Yunnan Province. Acta Mineralogica Sinica, 14(4): 361-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199404007.htm [28] Zheng, D.Z., Zheng, R.F., 2008. An Approach to Migration Forms and Ore-Forming Mechanism for Tungsten. Acta Geologica Sichuan, 28(4): 342-347 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB200804022.htm [29] Zhong, R.C., Yang, Y.F., Shi, Y.X., et al., 2008. Ore Characters and Ore Genesis of the Bairendaba Ag Polymetallic Ore Deposit in Keshiketeng Banner, Inner Mongolia. Geology in China, 35(6): 1274-1285 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200806025.htm [30] Zhou, X.W., Li, X.Z., 2001. Typomorohic Characteristics and Metallogenic Significance of Pyrrhotites in Laozuoshan Gold Deposit. World Geology, 20(2): 133-137, 141 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ200102005.htm [31] Zhao, S.R., Bian, Q.J., Ling, Q.C., et al., 2004. Crystallography and Mineralogy. Higher Education Press, Beijing (in Chinese). [32] 常勇, 赖勇, 2010. 内蒙古银都银铅锌多金属矿床成矿流体特征及成矿年代学研究. 北京大学学报(自然科学版), 46(4): 581-593. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201004013.htm [33] 高建京, 2007. 豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究(硕士学位论文). 北京: 中国地质大学. [34] 韩吟文, 马振东, 张宏飞, 等, 2003. 地球化学. 北京: 地质出版社. [35] 黄崇轲, 朱裕生, 2002. 中国银矿床及其时空分布. 北京: 地震出版社. [36] 江思宏, 聂凤军, 刘翼飞, 等, 2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究. 矿床地质, 28(1): 101-112. doi: 10.3969/j.issn.0258-7106.2010.01.010 [37] 李九玲, 李树岩, 1990. 内蒙古白音诺尔等矿床中方铅矿中银的赋存形式及其与伴生元素锑、铋的关系. 岩石矿物学杂志, 9(4): 365-371. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199004008.htm [38] 刘家军, 邢永亮, 王建平, 等, 2010. 内蒙拜仁达坝超大型Ag-Pb-Zn多金属矿床中针硫锑铅矿的发现与成因意义吉林大学学报(地球科学版), 40(3): 565-572. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003013.htm [39] 刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024 [40] 刘妍, 江思宏, 张志刚, 等, 2011. 内蒙古拜仁达坝-维拉斯托银多金属矿床的矿相学. 矿床地质, 30(5): 837-854. doi: 10.3969/j.issn.0258-7106.2011.05.007 [41] 刘翼飞, 2009. 内蒙古克什克腾旗拜仁达坝银铅锌多金属矿床成因研究(硕士学位论文). 北京: 中国地质科学院. [42] 刘翼飞, 聂凤军, 江思宏, 等, 2012. 内蒙古拜仁达坝铅-锌-银矿床: 元素分带及其成因. 吉林大学学报(地球科学版), 42(4): 1055-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201204021.htm [43] 潘小菲, 郭利军, 王硕, 等, 2009. 内蒙古维拉斯托铜锌矿床的白云母Ar/Ar年龄探讨. 岩石矿物学杂志, 28(5): 473-479. doi: 10.3969/j.issn.1000-6524.2009.05.007 [44] 帅德全, 1990. 我国南方一些金银矿床和锡-银多金属矿床中的银黝铜矿及其标型意义. 广西地质, 3(4): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199004002.htm [45] 孙丰月, 王力, 2008. 内蒙拜仁达坝银铅锌多金属矿床成矿条件. 吉林大学学报(地球科学版), 38(3): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200803003.htm [46] 王瑾, 侯青叶, 陈岳龙, 等, 2010. 内蒙古维拉斯托铜多金属矿床流体包裹体研究. 现代地质, 24(5): 847-855. doi: 10.3969/j.issn.1000-8527.2010.05.004 [47] 王力, 孙丰月, 2008. 内蒙拜仁达坝银铅锌多金属矿床地质特征. 世界地质, 27(3): 252-259. doi: 10.3969/j.issn.1004-5589.2008.03.003 [48] 王永强, 赵俊哲, 2008. 南岭中段九嶷山锡矿田W、Sn迁移形式与沉淀机制. 华南地质与矿产, (1): 7-11. doi: 10.3969/j.issn.1007-3701.2008.01.002 [49] 肖利梅, 2005. 内蒙古赤峰拜仁达坝银多金属矿矿床特征及成因探讨(硕士学位论文). 长春: 吉林大学. [50] 许怀凤, 2004. 克什克腾旗拜仁达坝多金属矿物研究. 内蒙古电大学刊, (2): 26, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-LMDX200402013.htm [51] 徐启东, 周炼, 2004. 云南兰坪北部铜多金属矿化成矿流体流动与矿化分带. 矿床地质, 23(4): 452-463. doi: 10.3969/j.issn.0258-7106.2004.04.005 [52] 颜文, 欧阳自远, 李朝阳, 等, 1994. 兰坪-思茅盆地脉状铜矿床黝铜矿的矿物化学. 矿物学报, 14(4): 361-368. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199404007.htm [53] 郑大中, 郑若锋, 2008. 钨的迁移形式成矿机理新探. 四川地质学报, 28(4): 342-347. doi: 10.3969/j.issn.1006-0995.2008.04.021 [54] 钟日晨, 杨永飞, 石英霞, 等, 2008. 内蒙古拜仁达坝银多金属矿区矿石矿物特征及矿床成因. 中国地质, 35(6): 1274-1285. doi: 10.3969/j.issn.1000-3657.2008.06.023 [55] 周喜文, 李宪洲, 2001. 老柞山金矿磁黄铁矿的标型特征及其矿化指示意义. 世界地质, 20(2): 133-137, 141. doi: 10.3969/j.issn.1004-5589.2001.02.005 [56] 赵珊茸, 边秋娟, 凌其聪, 等, 2004. 结晶学及矿物学. 北京: 高等教育出版社.