Mineralogical Characteristics of Zhibula Skarn-Type Cu Deposit in Tibet and Their Geological Significance
-
摘要: 西藏冈底斯知不拉矽卡岩型铜矿床位于驱龙超大型斑岩型铜钼矿床以南约2 km,矽卡岩及矿体主要呈层状-似层状赋存于下侏罗统叶巴组凝灰岩和大理岩中,具有凝灰岩-石榴子石化凝灰岩-石榴子石矽卡岩-辉石矽卡岩-(硅灰石化)大理岩的空间分带特征.石榴子石从早期到晚期以及从凝灰岩到大理岩方向均具有暗棕红色-棕红色-绿色(褐色)-淡黄褐色的变化特征,以钙铁榴石和钙铝榴石为主,辉石主要为透辉石,少量为锰钙辉石.靠近凝灰岩的石榴子石Al、Ti含量较高,靠近大理岩的石榴子石Fe、Mn含量较高.石榴子石环带特征明显,浅色环带富钙铁,暗色环带富钙铝,由核部向边缘整体显示钙铁组分逐渐增加、钙铝组分相对减少的趋势.知不拉层状-似层状矽卡岩型矿体是由深部隐伏岩浆结晶分异的含矿热液在温度与压力的驱动下沿凝灰岩和大理岩的岩性分界面选择性交代形成,属于岩浆热液接触交代型矿床而非层控或喷流成因层矽卡岩型矿床,应与驱龙斑岩铜钼矿床属于同一套斑岩成矿系统.Abstract: The Zhibula skarn-type Cu deposit is located about 2 km away from the south of Qulong super-large porphyry Cu-Mo deposit in Gangdese metallogenic belt, Tibet. The skarn and ore body are mainly distributed as layer-stratoid in the tuff and marble of Yeba Group in Lower Jurassic, which show zoning characteristics: tuff-garnert tuff-garnet skarn-pyroxene skarn-(wollastonite) marble. From early to late stages, or from tuff to marble, the colors of garnets change from dark brownish red to brownish red, followed by green(brown), and pale brownish yellow These garnets are mainly grossular and andradite. The end members of pyroxenes are dominated by diopside, with minor johannsenite. Garnets near tuff have higher Al, Ti contents, whereas those nearthe marble have relatively more enriched Fe, Mn contents. Garnets show distinctive light and dark oscillatory-zoning. Light zoning is distinctively enriched withcalcium-iron components, and dark zoning is enriched with calcium-aluminum components. These garnets generally show increasing calcium-iron components and relatively reducing calcium-aluminum components from the core to outer zones. The Zhibula layer-stratoid skarn-type ore body are developed due to thedeep buriedore-bearinghy drothermal migration with differential magmatic crystallization along the interface, or migration along fractured rock bands driven by temperature and pressure differences. In addition, selective metasomatic alteration between tuff and marble or crystalline limestone contributed to the formation of this ore deposits. Therefore, this ore deposit belongs to the magmatic hydrothermal contact metasomatic type rather than stratabound or exhalative forming layer skarn-type, and has the same forming mechanism with Qulong porphyry Cu-Mo deposit.
-
Key words:
- skarn /
- alteration /
- garnet /
- Cu deposit /
- mineralogy /
- Zhibula of Tibet
-
图 1 西藏冈底斯主要矿床分布(据Wu et al., 2014; Zheng et al., 2014修改)
Fig. 1. Distribution of major ore deposits in the Gangdese belt, Tibet
图 3 知不拉铜矿床典型矿石类型及金属矿物特征
a~e为手标本;f~k为反射光;a.暗棕红色石榴子石矽卡岩被磁铁矿细脉切割,二者同时被晚期的黄铜矿-黄铁矿细脉脉切割,最后被最晚期的无矿石英-绿泥石(两侧,少量)脉切割;b.暗棕红色石榴子石被浸染状磁铁、阳起石沿孔隙矿交代充填,同时发育阳起石细脉;c.磁铁矿交代暗棕红色石榴子石呈其假象,部分石榴子石残余呈似脉状;后黄铜矿充填于石榴子石、磁铁矿的粒间;d.绿帘石矽卡岩被阳起石脉切割,后被黄铜矿-黄铁矿-绿泥石-石英脉切割;e.方铅矿、闪锌矿呈不连续的脉状切割以及呈浸染状交代早期的黄铜矿;f.石榴子石间隙中的自形放射状的辉钼矿集合体,其周围可见玫瑰红色的斑铜矿充填,说明辉钼矿形成较斑铜矿早;g.钙铁辉石中赤铁矿呈尖角状交代磁铁矿,辉铜矿与黄铜矿共结边接触并充填与磁铁矿的空隙;h.黄铜矿沿磁黄铁矿的间隙边缘充填交代,晚于磁黄铁矿生成;且剩余少量未被交代的石榴子石,显交代残余结构;i.闪锌矿呈尖角状交代第1世代黄铜矿,其晚于黄铜矿生成;j.方铅矿、闪锌矿呈尖角状交代第1世代的黄铜矿,使部分黄铜矿呈孤岛状;k.黄铁矿,毒砂的自形晶结构,方铅矿交代第1世代黄铜矿,闪锌矿与第2世代黄铜矿呈乳滴状分布,构成固溶体分离结构;Grt.石榴子石;Hd.钙铁辉石;Q.石英;Ep.绿帘石;Act.阳起石;Chl.绿泥石;Mt.磁铁矿;Hem.赤铁矿;Pyr.磁黄铁矿;Moly.辉钼矿;Py.黄铁矿;Apy.毒砂;Cpy.黄铜矿;Cha.辉铜矿;Bn.斑铜矿;Sph.闪锌矿;Ga.方铅矿
Fig. 3. Typical ore types and metallic mineral characteristics of the Zhibula Cu deposit
图 4 知不拉铜矿床矽卡岩矿物特征
a~d为手标本;e、h为单偏光镜下;f、g、i、j为正交偏光镜下;a.暗棕红色石榴子石早于呈不规则脉状的棕红色石榴子石,裂隙、粒间含辉钼矿;b.棕红色石榴子石间隙可见绿色石榴子石充填,绿色石榴子石形成稍晚于棕红色石榴子石.粒间含少量的黄铜矿、斑铜矿;c.石榴子石核部为绿色石榴子石,边缘为褐色石榴子石,边缘稍晚于核部,是石榴子石的增生加大现象,而不是核部由于后期的交代蚀变形成的绿色.粒间可见少量黄铜矿、石英等;d.石榴子石、辉石、大理岩的接触关系,呈现局部的手标本尺度的分带,其中辉石形成的分带较窄;e.自形粒状的褐色石榴子石颗粒,其粒间被方解石充填;f.自形石榴子石被小颗粒的辉石、石英、方解石沿边缘交代;同时可见方解石以微细脉状切割石榴子石;g.自形长柱状以及粒状的辉石的简单双晶以及彩色聚片双晶;h.凝灰岩中的被交代蚀变的半自形棕红色石榴子石,粒间可见少量辉石;i.大理岩中的低干涉色硅灰石以及少量的干涉色稍高的放射状的透闪石;j.具有鲜艳干涉色的粒状绿帘石;Mb.大理岩;DR-Grt.暗棕红色石榴子石;R-Grt.棕红色石榴子石;G-Grt.绿色石榴子石;B-Grt.褐色石榴子石;Grt.石榴子石;Di.辉石;Ep.绿帘石;Tr.透闪石;Wo.硅灰石;Q.石英;Cal.方解石;Cpy.黄铜矿;Bn.斑铜矿
Fig. 4. Typical skarn mineral characteristics of the Zhibula Cu deposit
图 6 石榴子石和辉石端元组分与世界矽卡岩对比(Meinert et al., 2005)
Fig. 6. End members of garnets and pyroxenes in comparison with other skarn deposits in the world
表 1 知不拉铜矿床暗棕红色和绿色石榴子石电子探针分析结果
Table 1. Results of electron microprobe analysis of dark red brown and green garnets from the Zhibula Cu deposit
样品号 ZBL1611-169-1 ZBL1611-169-2 ZBL1611-172 ZBL1611-375 ZBL1611-377.5 Z11-8 ZBL1611-179-1 核-1 核-2 核-3 核-4 边-5 边-6 边-7 边-8 暗棕红色石榴子石(浅部到深部) 绿色石榴子石 SiO2 37.41 37.60 36.44 36.73 36.05 36.53 35.86 36.57 35.60 36.76 35.77 36.47 35.97 36.02 TiO2 0.76 1.97 1.73 1.82 0.01 0.06 0.03 0.02 0.00 0.39 0.00 1.46 0.01 0.11 Al2O3 9.92 17.19 8.53 5.48 0.34 4.26 0.16 4.08 0.42 4.21 0.12 6.01 0.78 0.07 Cr2O3 0.17 0.00 0.05 0.04 0.12 0.22 0.09 0.16 0.12 0.07 0.10 0.11 0.13 0.09 FeOT 15.90 4.38 19.36 21.98 29.14 24.10 29.75 24.38 28.89 23.77 30.56 20.93 27.89 29.80 MnO 0.36 0.18 0.88 0.42 0.15 0.11 0.10 0.27 0.40 0.29 0.43 0.29 0.00 0.08 MgO 0.10 1.62 0.05 0.00 0.03 0.12 0.06 0.11 0.10 0.09 0.09 0.05 0.52 0.14 CaO 34.72 37.21 32.00 33.65 33.15 33.93 33.40 34.24 33.94 33.99 32.49 33.55 34.16 33.54 Na2O 0.14 0.20 0.22 0.09 0.18 0.00 0.08 0.14 0.14 0.09 0.00 0.11 0.04 0.04 K2O 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.05 Total 99.49 100.35 99.26 100.22 99.16 99.33 99.55 99.98 99.62 99.66 99.55 98.98 99.49 99.95 以12个氧原子为基础计算的阳离子系数 Si 3.102 2.933 3.077 3.130 3.251 3.185 3.234 3.177 3.208 3.189 3.235 3.132 3.223 3.236 Ti 0.047 0.116 0.110 0.117 0.001 0.004 0.002 0.001 0.000 0.025 0.000 0.094 0.001 0.007 Al 0.969 1.580 0.849 0.550 0.036 0.438 0.017 0.418 0.045 0.430 0.013 0.608 0.082 0.007 Cr 0.011 0.000 0.003 0.003 0.009 0.015 0.006 0.011 0.009 0.005 0.007 0.007 0.009 0.006 Fe3+ 1.054 0.280 1.156 1.371 2.011 1.636 2.049 1.644 1.984 1.609 2.071 1.346 1.915 2.046 Fe2+ 0.000 0.000 0.146 0.106 0.000 0.002 0.000 0.000 0.000 0.000 0.041 0.073 0.000 0.000 Mn 0.025 0.012 0.063 0.030 0.011 0.008 0.008 0.020 0.031 0.021 0.033 0.021 0.000 0.006 Mg 0.007 0.112 0.004 0.000 0.002 0.009 0.005 0.008 0.008 0.007 0.007 0.004 0.041 0.011 Ca 3.084 3.109 2.895 3.072 3.203 3.169 3.228 3.187 3.277 3.159 3.148 3.087 3.280 3.229 Na 0.023 0.030 0.036 0.015 0.031 0.000 0.014 0.024 0.024 0.015 0.000 0.018 0.007 0.007 K 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.001 0.000 0.000 0.001 0.000 0.000 0.006 Ura 0.54 0.00 0.14 0.14 0.42 0.72 0.31 0.53 0.42 0.23 0.34 1.07 0.46 0.31 Pyr 0.36 5.87 0.15 0.00 0.12 0.44 0.23 0.41 0.39 0.34 0.34 0.54 2.04 0.54 Spe 1.24 0.63 2.61 1.57 0.56 0.39 0.37 0.95 1.49 1.04 0.38 1.07 0.00 0.00 Alm 0.00 0.00 1.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pra 1.59 6.50 4.14 1.57 0.67 0.83 0.60 1.36 1.88 1.37 0.73 1.61 2.04 0.54 Gro 46.34 78.80 47.88 27.41 1.31 20.35 0.42 19.15 0.92 20.05 0.00 30.04 2.72 0.00 And 51.52 14.71 47.84 70.89 97.61 78.10 98.67 78.96 96.78 78.35 98.93 68.32 94.79 99.15 注:氧化物分析结果单位为“%”. 表 2 知不拉铜矿床褐色和淡黄褐色石榴子石电子探针分析结果
Table 2. Results of electron microprobe analysis of brown fawn and garnets from the Zhibula Cu deposit
样品号 ZBL1611-175 ZBL1611-176 ZBL1611-179-2 ZBL1611-374-1 ZBL1611-374-2 ZBL1611-180.8-1 ZBL1611-180.8-2 ZBL1611-371.5 核-1 边-2 边-3 边-4 边-5 核-1 核-2 边-3 边-4 边-5 边-6 褐色石榴子石(浅部到深部) 淡黄褐色石榴子石(浅部到深部) SiO2 36.19 36.40 36.19 36.05 36.19 35.94 36.54 36.02 35.88 35.09 35.46 35.61 35.60 35.61 35.92 35.57 36.12 TiO2 0.00 0.02 0.00 0.05 0.00 0.03 0.07 0.00 0.00 0.00 0.14 0.01 0.06 0.00 0.09 0.02 0.00 Al2O3 0.43 0.47 1.99 0.30 1.94 1.12 5.22 0.35 0.79 0.32 0.47 0.18 0.00 0.00 0.23 0.98 0.05 Cr2O3 0.22 0.22 0.00 0.02 0.05 0.00 0.12 0.00 0.06 0.07 0.08 0.16 0.00 0.00 0.00 0.13 0.03 FeOT 28.84 29.38 26.89 29.38 26.94 28.06 22.81 29.24 28.75 29.60 29.66 29.19 29.64 29.43 29.32 28.14 29.61 MnO 0.27 0.27 0.26 0.21 0.16 0.04 0.02 0.24 0.42 1.16 1.01 0.83 0.74 0.93 1.14 1.15 1.02 MgO 0.02 0.06 0.07 0.16 0.00 0.08 0.13 0.00 0.37 0.01 0.07 0.00 0.10 0.00 0.04 0.08 0.00 CaO 33.01 33.42 33.48 33.23 34.03 33.62 34.62 33.21 32.94 32.93 32.88 33.50 33.17 33.08 32.53 33.19 32.52 Na2O 0.16 0.02 0.14 0.15 0.08 0.03 0.17 0.00 0.03 0.13 0.11 0.08 0.05 0.00 0.18 0.05 0.14 K2O 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.03 0.00 0.01 0.00 0.00 0.00 Total 99.14 100.27 99.05 99.55 99.39 98.92 99.71 99.10 99.24 99.32 99.88 99.59 99.36 99.05 99.45 99.31 99.50 以12个氧原子为基础计算的阳离子系数 Si 3.258 3.245 3.224 3.244 3.215 3.230 3.154 3.252 3.231 3.190 3.197 3.217 3.227 3.236 3.243 3.203 3.260 Ti 0.000 0.001 0.000 0.003 0.000 0.002 0.005 0.000 0.000 0.000 0.009 0.001 0.004 0.000 0.006 0.001 0.000 Al 0.046 0.049 0.209 0.032 0.203 0.119 0.531 0.037 0.084 0.034 0.050 0.019 0.000 0.000 0.024 0.104 0.005 Cr 0.016 0.016 0.000 0.001 0.004 0.000 0.008 0.000 0.004 0.005 0.006 0.011 0.000 0.000 0.000 0.009 0.002 Fe3+ 1.991 1.991 1.846 2.022 1.843 1.937 1.534 2.010 1.984 2.046 2.039 2.010 2.049 2.041 2.023 1.939 2.044 Fe2+ 0.000 0.018 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.021 0.020 0.020 0.016 0.012 0.003 0.001 0.018 0.032 0.089 0.077 0.064 0.057 0.072 0.087 0.088 0.078 Mg 0.002 0.005 0.006 0.013 0.000 0.006 0.010 0.000 0.029 0.001 0.006 0.000 0.008 0.000 0.003 0.006 0.000 Ca 3.184 3.192 3.196 3.203 3.239 3.237 3.202 3.212 3.178 3.208 3.176 3.242 3.221 3.220 3.146 3.203 3.144 Na 0.028 0.003 0.024 0.026 0.014 0.005 0.028 0.000 0.005 0.023 0.019 0.014 0.009 0.000 0.032 0.009 0.024 K 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.003 0.000 0.001 0.000 0.003 0.000 0.001 0.000 0.000 0.000 Ura 0.76 0.75 0.00 0.07 0.17 0.00 0.39 0.00 0.20 0.24 0.27 0.56 0.00 0.00 0.00 0.44 0.10 Pyr 0.08 0.23 0.27 0.62 0.00 0.31 0.48 0.00 1.41 0.04 0.27 0.00 0.00 0.00 0.16 0.31 0.00 Spe 1.00 0.99 0.95 0.78 0.59 0.15 0.07 0.89 1.53 1.62 2.20 0.94 0.00 0.00 1.09 4.21 0.26 Alm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pra 1.08 1.22 1.22 1.39 0.59 0.46 0.55 0.89 2.94 1.66 2.47 0.94 0.00 0.00 1.25 4.51 0.26 Gro 1.50 1.58 9.32 0.61 9.50 5.46 25.20 1.22 2.05 0.00 0.00 0.00 0.00 0.00 0.00 1.98 0.00 And 96.67 96.45 89.47 97.93 89.74 94.09 73.86 97.89 94.81 98.10 97.26 98.50 100.00 100.00 98.75 93.06 99.64 注:Ura.钙铬榴石;Pyr.镁铝榴石;Spe.锰铝榴石;Alm.铁铝榴石;Pra.Alm、Pyr和Spe三种矿物含量之和;Gro.钙铝榴石;And.钙铁榴石;FeOT.全铁;0.00表示低于检测限;分析精度为0.0n%. 表 3 知不拉铜矿床辉石电子探针分析结果
Table 3. Results of electron microprobe analysis of pyroxenes from the Zhibula Cu deposit
样品号 ZBL1611-375-2 ZBL1611-377.5-1 Z11-39-1 Z11-39-2 Z11-8-1 ZBL1611-180.8-1 ZBL1611-180.8-2 ZBL1611-180.8-3 产状 石榴石矽卡岩间隙中的辉石 靠近大理岩含磁铁矿的辉石矽卡岩 SiO2 53.96 51.39 51.44 50.35 53.48 47.91 47.82 47.70 TiO2 0.00 0.23 0.12 0.09 0.00 0.00 0.00 0.02 Al2O3 0.01 1.48 0.00 0.04 0.04 0.01 0.25 0.00 Cr2O3 0.00 0.20 0.15 0.09 0.00 0.25 0.18 0.21 FeOT 0.38 5.48 12.02 14.62 2.82 18.61 19.10 16.48 MnO 0.11 0.31 0.23 0.42 0.22 7.93 6.58 9.81 MgO 18.93 14.97 11.55 9.72 17.56 2.23 2.58 2.36 CaO 26.04 24.76 24.07 23.48 25.68 22.36 22.68 22.90 Na2O 0.14 0.21 0.19 0.11 0.14 0.20 0.39 0.22 K2O 0.00 0.00 0.00 0.04 0.02 0.00 0.02 0.00 Total 99.57 99.03 99.77 98.96 99.96 99.50 99.60 99.62 以6个氧原子为基准计算的阳离子系数 Si 1.967 1.929 1.970 1.970 1.964 1.970 1.960 1.962 Al(Ⅳ) 0.000 0.006 0.003 0.003 0.000 0.000 0.000 0.001 Ti 0.000 0.006 0.003 0.003 0.000 0.000 0.000 0.001 Cr 0.000 0.006 0.005 0.003 0.000 0.008 0.006 0.007 Fe3+ 0.112 0.109 0.094 0.091 0.122 0.099 0.139 0.134 Fe2+ 0.000 0.061 0.288 0.384 0.000 0.536 0.508 0.427 Mn 0.003 0.010 0.007 0.014 0.007 0.276 0.228 0.342 Mg 1.029 0.838 0.659 0.567 0.961 0.137 0.158 0.145 Ca 1.017 0.996 0.988 0.984 1.010 0.985 0.996 1.009 Na 0.010 0.015 0.014 0.008 0.010 0.016 0.031 0.018 K 0.000 0.000 0.000 0.002 0.001 0.000 0.001 0.000 Di 89.88 82.29 62.87 53.71 88.20 13.05 15.26 13.82 Hd 0.00 5.99 27.50 36.36 0.00 51.13 49.16 40.78 Jo 0.33 1.08 0.78 1.44 0.71 29.12 25.55 37.41 注:Di.透辉石;Hd.钙铁辉石;Jo.锰钙辉石;FeOT.全铁;0.00表示低于检测限;分析精度为0.0n%. -
[1] Atkinson, W.W., Einaudi, M.T., 1978. Skarn Formation and Mineralization in the Contact Aureole at Carr Fork, Bingham, Utah. Economic Geology, 73(7): 1326-1365. doi: 10.2113/gsecongeo.73.7.1326 [2] Baker, T., Van Achterberg, E., Ryan, C.R., et al., 2004. Composition and Evolution of Ore Fluids in a Magmatic-Hydrothermal Skarn Deposit. Geology, 32(2): 117-120. doi: 10.1130/G19950.1 [3] Berman, R.G., Brown, T.H., Greenwood, H.J., 1985. Heat Capacity of Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-O2. Contributions to Mineralogy and Petrology, 89(2-3): 168-183. doi: 10.1007/BF00379451 [4] Calagari, A.A., Hosseinzadeh, G., 2006. The Mineralogy of Copper-Bearing Skarn to the East of the Sungun-Chay River, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 28(4-6): 423-438. doi: 10.1016/j.jseaes.2005.11.009 [5] Canet, C., González, P.E., Camprubí, A., et al., 2011. The Zn-Pb-Ag Skarns of Zacatepec, Northeastern Oaxaca, Mexico: A Study of Mineral Assemblages and Ore-Forming Fluids. Ore Geology Reviews, 39(4): 277-290. doi: 10.1016/j.oregeorev.2011.03.007 [6] Chang, Y.F., Liu, X.G., 1983. On Strata-Bound Skarn Deposits. Mineral Deposits, 2(1): 11-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198301001.htm [7] Chang, Z.S., Meinert, L.D., 2004. The Magmatic-Hydrothermal Transition—Evidence from Quartz Phenocryst Textures and Endoskarn Abundance in Cu-Zn Skarns at the Empire Mine, Idaho, USA. Chemical Geology, 210(1-4): 149-171. doi: 10.1016/j.chemgeo.2004.06.018 [8] Chen, L., Qing, K.Z., Li, G.M., et al., 2012. Geological and Skarn Mineral Characteristics of Nuri Cu-W-Mo Deposit in Southeast Gangdese, Tibet. Mineral Deposits, 31(3): 417-437 (in Chinese with English abstract). http://www.researchgate.net/publication/285319845_Geological_and_skarn_mineral_characteristics_of_Nuri_Cu-W-Mo_deposit_in_southern_Gangdese_Tibet [9] Crowe, D.E., Riciputi, L.R., Bezenek, S., et al., 2001. Oxygen Isotope and Trace Element Zoning in Hydrothermal Garnets: Windows into Large-Scale Fluid-Flow Behavior. Geology, 29(6): 479-482. doi: 10.1130/0091-7613120013029<0479:OIATEZ>2.0.CO;2 [10] Deer, W.A., Howie, R.A., Zussman, J., 1992. An Introduction to the Rock-Forming Minerals. Longman Group Ltd., New York, 696. [11] Du, G.S., Yao, P., Pan, F.Z., et al., 1998. Sedimentation-Exhalation Skarn and Ore-Formation—Example by Jiama Copper-Polymetallic Deposits, Xizang (Tibet). Sichuan Science and Technology Press, Chengdu, 40-136 (in Chinese with English abstract). [12] Du, Y.L., 2013. Ore-Controlling Factors and Metallogenic Model of Strata Bound Skarn Deposits in Tongling Area, Anhui Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [13] Einaudi, M.T., Burt, D.M., 1982. Introduction, Terminology, Classification, and Composition of Skarn Deposits. Economic Geology, 77(4): 745-754. doi: 10.2113/gsecongeo.77.4.745 [14] Einaudi, M.T., Meinert, L.D., Newberry, R.J., 1981. Skarn Deposits. Economic Geology, 75: 317-391. [15] Geng, Q.R., Pan, G.T., Jin, Z.M., et al., 2005. Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet. Earth Science—Journal of China University of Geosciences, 30(6): 747-760 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_dqkx-e200504001.aspx [16] Gu, X.X., Dong, S.Y., Liu, L., et al., 2008. Ore-Forming Conditions and Significance of Unconformity in the Mineralization of the Yi'nan Au-Cu-Fe Deposit, Shandong, China. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 254-268 (in Chinese with English abstract). http://dialnet.unirioja.es/servlet/articulo?codigo=265509 [17] Harris, N.B., Einaudi, M.T., 1982. Skarn Deposits in the Yerington District, Nevada; Metasomatic Skarn Evolution near Ludwig. Economic Geology, 77(4): 877-898. doi: 10.2113/gsecongeo.77.4.877 [18] Hezarkhani, A., Williams-Jones, A.E., Gammons, C.H., 1999. Factors Controlling Copper Solubility and Chalcopyrite Deposition in the Sungun Porphyry Copper Deposit, Iran. Mineralium Deposita, 34(8): 770-783. doi: 10.1007/s001260050237 [19] Holten, T., Jamtveit, B., Meakin, P., 2000. Noise and Oscillatory Zoning of Minerals. Geochimica et Cosmochimica Acta, 64(11): 1893-1904. doi: 10.1016/s0016-7037199100444-5 [20] Huang, H.S., 1994. Advances in Skarn Deposits. Earth Science Frontiers, 1(3-4): 105-111 (in Chinese with English abstract). [21] Jamtveit, B., 1991. Oscillatory Zonation Patterns in Hydrothermal Grossular-Andradite Garnet; Nonlinear Dynamics in Regions of Immiscibility. American Mineralogist, 76(7-8): 1319-1327. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=76/7-8/1319 [22] Jamtveit, B., Wogelius, R.A., Fraser, D.G., 1993. Zonation Patterns of Skarn Garnets: Records of Hydrothermal System Evolution. Geology, 21(2): 113-116. doi: 10.1130/0091-7613(1993)021<0113:ZPOSGR>2.3.CO;2 [23] Jiang, H.Z., Zeng, H.L., Wu, Z.S., 2011. Geological Characteristics and Prospecting Prediction in Deep Area of Layered Skarn Cu-W-Mo Deposit in Shannan Nuri Ore District, Tibet. Geology and Exploration, 47(1): 71-77 (in Chinese with English abstract). [24] Li, G.M., Rui, Z.Y., Wang, G.M., et al., 2005. Molybdenite Re-Os Dating of Jiama and Zhibula Polymetallic Copper Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance. Mineral Deposits, 24(5): 481-489 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200505002.htm [25] Liang, X.J., 1994. Garnets of Garossular-Andradite Series: Their Characteristics and Metaomatic Mechanism. Acta Petrologica et Mieralogica, 13(4): 342-352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW404.007.htm [26] Lin, X.D., 1987. A Skarn Genesis—Magmatic Genesis. Geological Science and Technology Information, 6(2): 92-94 (in Chinese). [27] Lu, H.Z., Liu, Y.M., Wang, C.L., et al., 2003. Mineralization and Fluid Inclusion Study of the Shizhuyuan W-Sn-Bi-Mo-F Skarn Deposit, Hunan Province, China. Economic Geology, 98(5): 955-974. doi: 10.2113/gsecongeo.98.5.955 [28] Lu, Y.F., Chen, K.X., Zhan, M.G., 1999. Geochemical Evidence of Exhalative-Sedimentary Ore-Bearing Skarns in Yangla Copper Mineralization Concentrated Area, Deqin County, Northwestern Yunnan Province. Earth Science—Journal of China University of Geosciences, 24(3): 298-303 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX903.017.htm [29] Maher, K.C., 2010. Skarn Alteration and Mineralization at Coroccohuayco, Tintaya District, Peru. Economic Geology, 105(2): 263-283. doi: 10.2113/gsecongeo.105.2.263 [30] Meinert, L.D., 1992. Skarns and Skarn Deposits. Geoscience Canada, 19(4): 145-162. http://pdf.eurekamag.com/023/023604119.pdf [31] Meinert, L.D., 1997. Application of Skarn Deposit Zonation Models to Mineral Exploration. Exploration and Mining Geology, 6(2): 185-208. http://www.researchgate.net/profile/Lawrence_Meinert/publication/262450785_Meinert_L.D._1997_Application_of_skarn_deposit_zonation_models_to_mineral_exploration_Exploration_and_Mining_Geology_v._6_p._185-208/links/0c960537bcd7f4e811000000.pdf [32] Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology, 100 th Anniversary Volume, 299-336. [33] Oyman, T., 2010. Geochemistry, Mineralogy and Genesis of the Ayazmant Fe-Cu Skarn Deposit in Ayvalik (Balikesir), Turkey. Ore Geology Reviews, 37(3-4): 175-201. doi: 10.1016/j.oregeorev.2010.03.002 [34] Pan, G.T., Chen, Z.L., Li, X.Z., et al., 1997. Geological Formation and Evolution of Eastern Tethys. Geological Publishing House, Beijing (in Chinese). [35] Qiu, R.L., 1988. A Study of Garnets and Their Zonal Structure in the Tongshan Skarn Type Copper Ore Deposit, Guichi County. Acta Petrologica et Mineralogica, 7(3): 244-252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW198803007.htm [36] Rui, Z.Y., Li, Y.Q., Wang, L.S., et al., 2003. Approach to Ore-Forming Conditions in Light of Ore Fluid Inclusions. Mineral Deposits, 22(1): 13-23 (in Chinese with English abstract). http://www.researchgate.net/publication/288907189_Approach_to_ore-forming_conditions_in_light_of_ore_fluid_inclusions [37] Seward, T.M., Barnes, H.L., 1997. Metal Transport by Hydrothermal Ore Fluids. Geochemistry of Hydrothermal Ore Deposits, 3: 435-486. http://ci.nii.ac.jp/naid/10008463258 [38] She, H.Q., Feng, C.Y., Zhang, D.Q., et al., 2005. Characteristics and Metallogenic Potential of Skarn Copper-Lead-Zinc Polymetallic Deposits in Central Eastern Gangdese. Mineral Deposits, 24(5): 508-520 (in Chinese with English abstract). http://www.researchgate.net/publication/306218076_Characteristics_and_metallogenic_potential_of_skarn_copper-lead-zinc_polymetallic_deposits_in_central_eastern_Gangdese [39] Smith, M.P., Henderson, P., Jeffries, T.E.R., et al., 2004. The Rare Earth Elements and Uranium in Garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on Processes in a Dynamic Hydrothermal System. Journal of Petrology, 45(3): 457-484. doi: 10.1093/petrology/egg087 [40] Wang, C.Y., Li, X.F., Xiao, R., et al., 2012. Elements Mobilization of Mineralized Porphyry Rocks during Hydrothermal Alteration at Zhushahong Porphyry Copper Deposit, Dexing District, South China. Acta Petrologica Sinica, 28(12): 3869-3886 (in Chinese with English abstract). http://www.researchgate.net/publication/284503741_Elements_mobilization_of_mineralized_porphyry_rocks_during_hydrothermal_alteration_at_Zhushahong_porphyry_copper_deposit_Dexing_district_South_China [41] Wang, S.X., Zhang, X.C., Leng, C.B., et al., 2008. Stable Isotopic Compositions of the Hongshan Skarn Copper Deposit in the Zhongdian Area and Its Implication for the Copper Mineralization Process. Acta Petrologica Sinica, 24(3): 480-488 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200803008.htm [42] Wilkinson, J.J., Crowther, H.L., Coles, B.J., 2011. Chemical Mass Transfer during Hydrothermal Alteration of Controls of Seafloor Subsidence, Sedimentation and Zn-Pb Mineralization in the Irish Carboniferous. Chemical Geology, 289(1): 55-75. doi: 10.1016/j.chemgeo.2011.07.008 [43] Wu, S., Zheng, Y.Y., Sun, X., et al., 2014. Origin of the Miocene Porphyries and Their Mafic Microgranular Enclaves from Dabu Porphyry Cu-Mo Deposit, Southern Tibet: Implications for Magma Mixing/Mingling and Mineralization. International Geology Review, 56(5): 571-595. doi: 10.1080/00206814.2014.880074. [44] Wu, Y.C., 1992. On Magmatic Skarn—A New Type of Skarn. Geology of Anhui, 2(1): 12-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHDZ199201002.htm [45] Xia, Y.F., 1999. Geological Characteristics and Ore-Forming Condition of Stratabound Skarn-Type Ore Deposits in Tongling District. Mineral Resources and Geology, 13(6): 338-342 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD199906013.htm [46] Xiao, B., Qin, K.Z., Li. G.M., et al., 2011. Distributions and Characters of Zhibula-Langmujiaguo Skarn Cu Deposits Environing the Qulong Porphyry Cu-Mo Deposit and Their Implications for Ore-Search towards to the Deep Subsurface. Geology and Exploration, 47(1): 43-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201101007.htm [47] Yan, X.Y., Huang, S.F., Du, A.D., 2010. Re-Os Ages of Large Tungsten, Copper and Molybdenum Deposit in the Zetang Orefield, Gangdisê and Marginal Strike-Slip Transforming Metallogenesis. Acta Geologica Sinica, 84(3): 398-406 (in Chinese with English abstract). [48] Yang, Z.S., Hou, Z.Q., Meng, Y.F., et al., 2004. Spatial-Temporal Structures of Hercynian Exhalative-Sedimentary Fluid System in Tonglin Ore Concentration Area, Anhui Province. Mineral Deposits, 23(3): 281-297 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200403002.htm [49] Yao, P., Zheng, M.H., Peng, Y.M., et al., 2002. Sources of Ore-Forming Materials and Genesis of the Jiama Copper and Polymetallic Deposit in Gangdise Island-Arc Belt, Xizang. Geological Review, 48(5): 468-479 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200205003.htm [50] Yin, J.W., Lee, H.K., Chio, K.K., et al., 2000. Characteristics of Garnet in Shizhuyuan Skarn Deposit, Hunan Province. Earth Science—Journal of China University of Geosciences, 25(2): 163-171 (in Chinese with English abstract). http://www.researchgate.net/publication/284193935_Characteristics_of_garnet_in_Shizhuyuan_skarn_deposit_Hunan_Province [51] Zeng, Q.D., Liu, J.M., Jia, C.S., et al., 2007. Sedimentary Exhalative Origin of the Baiyinnuoer Zinc-Lead Deposit, Chifeng, Inner Mongolia: Geological and Sulfur Isotope Evidence. Journal of Jilin University (Earth Science Edition), 37(4): 659-667 (in Chinese with English abstract). http://www.researchgate.net/publication/312662823_Sedimentary_exhalative_origin_of_the_Baiyinnuoer_zinc-lead_deposit_Chifeng_Inner_Mongolia_Geological_and_sulfur_isotope_evidence [52] Zhai, Y.S., Lin, X.D., Chi, S.C., et al., 1980. Discussion on the Yangtze River Iron Ore Deposit Types and Mineralization Series. Geology and Exploration, 3: 9-14 (in Chinese). [53] Zhai, Y.S., Yao, S.Z., Cai, K.Q., 2011. Mineral Deposits. Geological Publishing House, Beijing, 96-122 (in Chinese). [54] Zhang, S.Z., Ling, Q.C., 1993. Characteristics of Skarn Copper Deposit: An Example from Dongshizishan Copper Deposit in Tongling County, Anhui Province. Earth Science—Journal of China University of Geosciences, 18(6): 801-809 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199306017.htm [55] Zhang, Z.Y., Du, Y.S., Zhang, J., et al., 2013. Alteration, Mineralization, and Genesis of the Zoned Tongshan Skarn-Type Copper Deposit, Anhui, China. Ore Geology Reviews, 53: 489-501. doi: 10.1016/j.oregeorev.2013.02.009 [56] Zhao, B., Barton, M.D., 1987. Compositional Characteristics of Garnets and Pyroxenes in Contact-Metasomatic Skarn Deposits and Their Relationship to Metallizaition. Acta Mineralogica Sinica, 7(1): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB198701000.htm [57] Zhao, J.S., Xia, B., Qiu, X.L., et al., 2008. Finding of Melt Inclusion in Garnet from Skarn of Shilu Iron Deposit, Hainan Provinee. Acta Petrologica Sinica, 24(1): 149-160 (in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/51472?mode=full&submit_simple=Show+full+item+record [58] Zhao, Y.M., Dong, Y.G., Li, D.X., et al., 2003. Geology, Mineralogy, Geochemistry, and Zonation of the Bajiazi Dolostone-Hosted Zn-Pb-Ag Skarn Deposit, Liaoning Province, China. Ore Geology Reviews, 23(3): 153-182. http://ci.nii.ac.jp/naid/10030175201 [59] Zhao, Y.M., Lin, W.W., Bi, C.S., et al., 1990. China Skarn Deposits. Geological Publishing House, Beijing (in Chinese with English abstract). [60] Zhao, Y.M., Zhang, Y.N., Lin, W.W., 1997. Characteristics of Pyroxenes and Pyroxenoids in Skarn Deposits of China and Their Relationship with Metallization. Mineral Deposits, 16(4): 318-329 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ704.003.htm [61] Zheng, Y.Y., Gao, S.B., Zhang, D.Q., et al., 2006. Ore-Forming Fluid Controlling Mineralization in Qulong Super-Large Porphyry Copper Deposit, Tibet. Earth Science—Journal of China University of Geosciences, 31(3): 349-354 (in Chinese with English abstract). http://www.researchgate.net/publication/296736571_Ore-forming_fluid_controlling_mineralization_in_Qulong_super-large_porphyry_copper_deposit_Tibet [62] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79(Part B): 842-857. doi: 10.1016/j.jseaes.2013.03.029 [63] Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science—Journal of China University of Geosciences, 29(1): 103-108 (in Chinese with English abstract). http://www.researchgate.net/publication/285272629_Finding_characteristics_and_significances_of_Qulong_superlarge_porphyry_copper_molybdenum_deposit_Tibet [64] Zhou, T.F., Yuan, F., Yue, S.C., et al., 2002. Water/Rock Interaction during Formation of Skarn-Type Deposits in Yueshan Orefield, Anhui Province. Mineral Deposits, 21(1): 1-9 (in Chinese with English abstract). http://www.researchgate.net/publication/288031557_Water-rock_interaction_during_formation_of_skarn-type_deposits_in_Yueshan_orefield_Anhui_Province [65] 常印佛, 刘学圭, 1983. 关于层控式矽卡岩型矿床——以安徽省内下扬子坳陷中一些矿床为例. 矿床地质, 2(1): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198301001.htm [66] 陈雷, 秦克章, 李光明, 等, 2012. 西藏冈底斯南缘努日铜钨钼矿床地质特征与矽卡岩矿物学研究. 矿床地质, 31(3): 417-437. doi: 10.3969/j.issn.0258-7106.2012.03.002 [67] 杜光树, 姚鹏, 潘凤雏, 等, 1998. 喷流成因矽卡岩与成矿——以西藏甲马铜多金属矿床为例. 成都: 四川科学技术出版社, 40-136. [68] 杜轶伦, 2013. 安徽铜陵地区层控矽卡岩型矿床控矿因素及成矿模型研究(博士学位论文). 北京: 中国地质大学. [69] 耿全如, 潘桂棠, 金振民, 等, 2005. 西藏冈底斯带叶巴组火山岩地球化学及成因. 地球科学——中国地质大学学报, 30(6): 747-760. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506010.htm [70] 顾雪祥, 董树义, 刘丽, 等, 2008. 山东沂南金-铜-铁矿床成矿条件分析—兼论不整合面的控矿作用. 矿物岩石地球化学通报, 27(3): 254-268. doi: 10.3969/j.issn.1007-2802.2008.03.007 [71] 黄华盛, 1994. 矽卡岩矿床的研究现状. 地学前缘, 1(3-4): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY403.014.htm [72] 江化寨, 曾海良, 吴志山, 2011. 西藏山南努日矿区层矽卡岩型铜钨钼矿床地质特征及深部找矿预测. 地质与勘探, 47(1): 71-77. doi: 10.3969/j.issn.1001-1986.2011.01.017 [73] 李光明, 芮宗瑶, 王高明, 等, 2005. 西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义. 矿床地质, 24(5): 481-489. doi: 10.3969/j.issn.0258-7106.2005.05.002 [74] 梁祥济, 1994. 钙铝-钙铁系列石榴子石的特征及其交代机理. 岩石矿物学杂志, 13(4): 342-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW404.007.htm [75] 林新多, 1987. 矽卡岩的一种成因——岩浆成因. 地质科技情报, 6(2): 92-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198702021.htm [76] 路远发, 陈开旭, 战明国, 1999. 羊拉地区含矿矽卡岩成因的地球化学证据. 地球科学——中国地质大学学报, 24(3): 298-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX903.017.htm [77] 潘桂棠, 陈智梁, 李兴振, 等, 1997. 东特提斯地质构造形成演化. 北京: 地质出版社. [78] 邱瑞龙, 1988. 安徽贵池铜山矽卡岩铜矿石榴石及其环带研究. 岩石矿物学杂志, 7(3): 244-252. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198803007.htm [79] 芮宗瑶, 李荫清, 王龙生, 等, 2003. 从流体包裹体研究探讨金属矿床成矿条件. 矿床地质, 22(1): 13-23. doi: 10.3969/j.issn.0258-7106.2003.01.002 [80] 佘宏全, 丰成友, 张德全, 等, 2005. 西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析. 矿床地质, 24(5): 508-520. doi: 10.3969/j.issn.0258-7106.2005.05.005 [81] 王翠云, 李晓峰, 肖荣, 等, 2012. 德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律. 岩石学报, 28(12): 3869-3886. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212007.htm [82] 王守旭, 张兴春, 冷成彪, 等, 2008. 中甸红山矽卡岩铜矿稳定同位素特征及其对成矿过程的指示. 岩石学报, 24(3): 480-488. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803008.htm [83] 吴言昌, 1992. 论岩浆矽卡岩——一种新类型矽卡岩. 安徽地质, 2(1): 12-26. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ199201002.htm [84] 夏元法, 1999. 铜陵地区层控矽卡岩型矿床地质特征和成矿条件. 矿产与地质, 13(6): 338-342. doi: 10.3969/j.issn.1001-5663.1999.06.005 [85] 肖波, 秦克章, 李光明, 等, 2011. 冈底斯驱龙斑岩铜-钼矿区外围矽卡岩型铜矿的分布特征及深部找矿意义. 地质与勘探, 47(1): 43-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201101007.htm [86] 闫学义, 黄树峰, 杜安道, 2010. 冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用. 地质学报, 84(3): 398-406. doi: 10.3969/j.issn.1004-9665.2010.03.017 [87] 杨竹森, 侯增谦, 蒙义峰, 等, 2004. 安徽铜陵矿集区海西期喷流沉积流体系统时空结构. 矿床地质, 23(3): 281-297. doi: 10.3969/j.issn.0258-7106.2004.03.003 [88] 姚鹏, 郑明华, 彭勇民, 等, 2002. 西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究. 地质论评, 48(5): 468-479. doi: 10.3321/j.issn:0371-5736.2002.05.004 [89] 尹京武, 李铉具, 崔庆国, 等, 2000. 湖南省柿竹园矽卡岩矿床中石榴石特征. 地球科学——中国地质大学学报, 25(2): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002011.htm [90] 曾庆栋, 刘建明, 贾长顺, 等, 2007. 内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因: 地质和硫同位素证据. 吉林大学学报(地球科学版), 37(4): 659-667. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200704003.htm [91] 翟裕生, 林新多, 池三川, 等, 1980. 长江中下游内生铁矿床成因类型及成矿系列探讨. 地质与勘探, 3: 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198003002.htm [92] 翟裕生, 姚书振, 蔡克勤, 2011. 矿床学. 北京: 地质出版社, 96-122. [93] 张叔贞, 凌其聪, 1993. 矽卡岩浆型铜矿床特征——以安徽铜陵东狮子山铜矿床为例. 地球科学——中国地质大学学报, 18(6): 801-809. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199306017.htm [94] 赵斌, Barton, M.D., 1987. 接触交代矽卡岩型矿床中石榴子石和辉石成分特点及其与矿化的关系. 矿物学报, 7(1): 1-8. doi: 10.3321/j.issn:1000-4734.1987.01.001 [95] 赵劲松, 夏斌, 邱学林, 等, 2008. 海南岛石碌矽卡岩铁矿石中石榴子石的熔融包裹体及其意义. 岩石学报, 24(1): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801013.htm [96] 赵一鸣, 林文蔚, 毕承思, 等, 1990. 中国矽卡岩矿床. 北京: 地质出版社. [97] 赵一鸣, 张轶男, 林文蔚, 1997. 我国矽卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系. 矿床地质, 16(4): 318-329. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ704.003.htm [98] 郑有业, 高顺宝, 张大权, 等, 2006. 西藏驱龙超大型斑岩铜矿床成矿流体对成矿的控制. 地球科学——中国地质大学学报, 31(3): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603009.htm [99] 郑有业, 薛迎喜, 程力军, 等, 2004. 西藏驱龙超大型斑岩铜(钼)矿床: 发现, 特征及意义. 地球科学——中国地质大学学报, 29(1): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401018.htm [100] 周涛发, 袁峰, 岳书仓, 等, 2002. 安徽月山矿田矽卡岩型矿床形成的水岩作用. 矿床地质, 21(1): 1-9. doi: 10.3969/j.issn.0258-7106.2002.01.001