Coupling Simulation of Groundwater Seepage and Land Subsidence
-
摘要: 为了准确模拟由地下水开采导致渗流场和应力场发生变化而引起的地面沉降问题,根据Terzaghi有效应力原理,建立了地下水三维渗流与一维垂向固结的地下水渗流与地面沉降耦合数值模拟模型和以比奥固结理论为基础,并结合土体非线性流变理论,将土体本构关系推广到粘弹塑性,同时考虑土体力学参数及水力参数的动态变化关系的地下水渗流与地面沉降三维全耦合数值模拟模型.通过对比分析,结果表明:基于Terzaghi有效应力原理建立的地下水三维渗流与一维垂向固结地下水渗流与地面沉降耦合数值模拟模型模拟所得地面沉降与地下水位呈现出同步变化的趋势,并且当地下水位逐步回升至初始水位时,地面沉降也逐步回升到初始的零沉降状态.而以比奥固结为基础建立的地下水渗流与地面沉降三维全耦合数值模拟模型模拟所得的地面沉降变化趋势滞后于地下水位的变化趋势,并且当地下水位逐步回升至初始水位时,地面沉降虽也逐步得到回升,但回不到初始的零沉降状态,存在一个永久的残余沉降量.在土体参数变化方面,土体的孔隙度、渗透系数及泊松比均呈现先减小后增大的变化趋势,而弹性模量则呈现先增大后减小的变化趋势,与地面沉降的变化相对应.Abstract: In order to accurately simulate land subsidence caused by seepage field as a result of groundwater exploitation and stress field, two models are established in this study: one is groundwater seepage and land subsidence coupling numerical simulation model of the three-dimensional seepage of groundwater and one-dimensional vertical consolidation in light of Terzaghi effective stress principle; and the other is three-dimensional coupling model of groundwater seepage and land subsidence based on the Biot's consolidation theory combined with the nonlinear rheological theory of soil, extending the constitutive relation in Biot's consolidation theory to viscoelastic plasticity, taking into consideration of the dynamic change relationship of mechanical parameters and hydraulic parameters. The comparison and analysis show that the changing tendency of land subsidence calculated by groundwater seepage and land subsidence coupling numerical simulation model of the three-dimensional seepage of groundwater and one-dimensional vertical consolidation is the same as that of water level variation. When the water level falls back to the initial water level, total subsidence is 0. Land subsidence calculated by Biot's three-dimensional full coupling model falls behind of water level change. When the water level falls back to the initial water level, soil does not rebound to initial 0 subsidence state. There exists permanent remain of subsidence. In aspect of parameter change, porosity, hydraulic conductivity and Poisson's ratio have the tendency of decreasing first and then increasing. Modulus of elasticity has the tendency of decreasing first and then increasing. But these parameter values tend to be stable, corresponding to land subsidence variation.
-
表 1 地下水三维渗流与一维垂向固结沉降耦合模型地层参数
Table 1. Stratum parameters of the three-dimensional seepage of groundwater and one-dimensional vertical consolidation subsidence coupling model
参数分区 Kx(m·d-1) Ky(m·d-1) Kz(m·d-1) SS Sy(m -1) μske μskv 1 6×10-3 6×10-3 6×10-3 6×10-3 - 3.2×10-5 2.8×10-4 2 5×10-4 5×10-4 5×10-3 - 6×10-6 3.8×10-5 3.1×10-4 3 1.9 1.9 0.19 - 8×10-3 1.3×10-5 1.0×10-4 4 6×10-6 6×10-6 6×10-7 - 6×10-6 4.0×10-5 3.5×10-4 5 2.0 2.0 0.2 - 6×10-4 1.3×10-5 1.1×10-4 6 5×10-4 5×10-4 5×10-5 - 6×10-5 4.4×10-5 4.0×10-4 7 2.8 2.8 0.32 - 9×10-4 1.3×10-6 1.4×10-4 表 2 比奥固结地下水渗流与地面沉降三维全耦合模型地层参数
Table 2. Stratum parameters of the three-dimensional coupling model of groundwater seepage and land subsidence based on Biot consolidation
参数分区 K0x
(m·d-1)K0y
(m·d-1)K0z
(m·d-1)SS Sy
(m-1)r
(kN·m-3)φ
(°)C
(kPa)ν0 E0
(MPa)1 6×10-3 6×10-3 0.006 6×10-3 - 19.7 18 21 4.8×10-1 38 2 5×10-4 5×10-4 5×10-3 - 6×10-6 18.9 20 23 4.8×10-1 32 3 1.9 1.9 0.19 - 8×10-3 20.1 18 21 4.9×10-1 45 4 6×10-6 6×10-6 6×10-7 - 6×10-6 17.8 22 23 4.8×10-1 30 5 2.0 2.0 0.2 - 6×10-4 20.0 20 21 4.9×10-1 46 6 5×10-4 5×10-4 5×10-5 - 6×10-5 18.1 20 20 4.8×10-1 27 7 2.8 2.8 0.32 - 9×10-4 20.2 20 22 4.9×10-1 46 -
[1] Kan, J.L., Luo, L.H., 2010. Application of Processing Modflow in Predicton of Ground Subsidence. Journal of Railway Engineering Society, (2): 27-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDGC201002007.htm [2] Li, Y., He, Z.Z., Yan, G.H., et al., 2012. Excavation Dewatering and Ground Subsidence in Dual Structural Stratum of Wuhan. Chinese Journal of Geotechnical Engineering, 34(Suppl. ): 767-772(in Chinese with English abstract). http://www.researchgate.net/publication/298509739_Excavation_dewatering_and_ground_subsidence_in_dual_structural_stratum_of_Wuhan [3] Li, Y.M., Zhou, F.Y., 2004. Solution to a Class of Boundary-Value Problem of Three-Dimensional Partial Differential Equations. Journal of Jiangsu University(Natural Science Edition), 25(4): 328-331(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=JSLG200404013&dbcode=CJFD&year=2004&dflag=pdfdown [4] Luo, G., Zhang, J.M., 2004. Improvement of Duncan-Chang Nonlinear Model and Shen Zhujiang's Elastoplastic Model for Granular Soils. Rock and Soil Mechanics, 25(6): 887-890(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX200406011.htm [5] Luo, Z.J., Liu, J.B., Li, L., 2008. Three-Dimensional Full Coupling Numerical Simulation of Groundwater Dewatering and Land-Subsidence in Quaternary Loose Sediments. Chinese Journal of Geotechnical Engineering, 30(2): 193-198(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTGC200802007.htm [6] Luo, Z.J., Liu, J.B., Li, L., et al., 2006. Three Dimentional Coupled Numerical Model between Deep Foundation Pit Dewatering and Land-Subsidence. Chinese Journal of Hydrodynamics(Series A), 21(4): 479-485(in Chinese with English abstract). [7] Luo, Z.J., Zhang, Y.P., Liu, J.B., 2007. Study of Deep Foundation Pit Dewatering and Land-Subsidence Control. Journal of Shenyang Jianzhu University (Natural Science), 23(1): 47-51(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYJZ200701011.htm [8] Luo, Z.J., Zeng, F., 2011. Finite Element Numerical Simulation of Land Subsidence and Groundwater Exploitation Based on Visco-Elastic-Plastic Biot's Consolidation Theory. Journal of Hydrodynamics, 23(5): 615-624. doi: 10.1016/S1001-6058(10)60157-6 [9] Luo, Z.J., Zeng, F., Li, Y., 2009. Study on Three-Dimensional Full Coupling Model of Groundwater Exploitation and Land-Subsidence Control. Journal of Jilin University(Earth Science Edition), 39(6): 1080-1086(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDLJ200905008.htm [10] Peng, G.L., 2005. Fortran 95 Programming. China Electric Power Press, Beijing (in Chinese). [11] Qian, J.H., Yin, Z.Z., 1996. Principle and Calculation of Geotechnics. China Waterpower Press, Beijing (in Chinese). [12] Ran, Q.Q., Li, S.L., 1997. Study on Dynamic Models of Reservoir Parameters in the Coupled Simulation of Multiphase Flow and Reservoir Deformation. Petroleum Exploration and Development, 24(3): 61-65(in Chinese with English abstract). [13] Smith, I.M., Griffiths, D.V., 2003. Programming the Finite Element Method. Third Edition. Translated by Wang, S., Zhou, J.X., Wang, L., eds., Electronic Industry Press, Beijing (in Chinese). [14] Tian, J., Liu, X.G., Shang, G.H., 2005. Casing Damage Mech-anism Based on Theory of Fluid-Solid Coupling Flow through Underground Rock. Journal of Hydrodynamics(Series A), 20(2): 221-225(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=SDLJ20050200C&dbcode=CJFD&year=2005&dflag=pdfdown [15] Zhou, N.Q., Tang, Y. Q, Lou, R. X, et al., 2011. Numerical Simulation of Deep Foundation Pit Dewatering and Land Subsidence Control of Xujiahui Metro Station. Chinese Journal of Geotechnical Engineering, 33(12): 1950-1956(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201112023.htm [16] 阚京梁, 罗立红, 2010. Processing Modflow模型在预测地面沉降中的应用. 铁道工程学报, (2): 27-31. doi: 10.3969/j.issn.1006-2106.2010.02.007 [17] 李英, 何钟泽, 严桂华, 等, 2012. 武汉二元结构地层基坑降水及其地面沉降研究. 岩土工程学报, 34(增刊): 767-772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1149.htm [18] 李医民, 周凤燕, 2004. 一类三维偏微分方程边值问题的解法. 江苏大学学报(自然科学版), 25(4): 328-331. doi: 10.3969/j.issn.1671-7775.2004.04.013 [19] 罗刚, 张建民, 2004. 邓肯-张模型和沈珠江双屈服面模型的改进. 岩土力学学报, 25(6): 887-890. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200406011.htm [20] 骆祖江, 刘金宝, 李朗, 2008. 第四纪松散沉积层地下水疏降与地面沉降三维全耦合数值模拟. 岩土工程学报, 30(2): 193-198. doi: 10.3321/j.issn:1000-4548.2008.02.007 [21] 骆祖江, 刘金宝, 李朗, 等, 2006. 深基坑降水与地面沉降变形三维全耦合模型及其数值模拟. 水动力学研究与进展(A辑), 21(4): 479-485. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200604008.htm [22] 骆祖江, 张月萍, 刘金宝, 2007. 深基坑降水与地面沉降控制研究. 沈阳建筑大学学报(自然科学版), 23(1): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200701011.htm [23] 骆祖江, 曾峰, 李颖, 2009. 地下水开采与地面沉降控制三维全耦合模型研究. 吉林大学学报(地球科学版), 39(6): 1080-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906020.htm [24] 彭国伦, 2005. Fortran 95程序设计. 北京: 中国电力出版社. [25] 钱家欢, 殷宗泽, 1996. 土工原理与计算. 北京: 水力水电出版社. [26] 冉启全, 李士伦, 1997. 流固耦合油藏数值模拟中物性参数动态模型研究. 石油勘探与开发, 24(3): 61-65. doi: 10.3321/j.issn:1000-0747.1997.03.015 [27] Smith, I.M., Griffiths, D.V., 2003. 有限元方法编程, 王菘, 周坚鑫, 王来, 等, 译. 北京: 电子工业出版社. [28] 田杰, 刘先贵, 尚根华, 2005. 基于流固耦合理论的套损力学机理分析. 水动力学研究与进展(A辑), 20(2): 221-225. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ20050200C.htm [29] 周念清, 唐益群, 娄荣祥, 等, 2011. 徐家汇地铁站深基坑降水数值模拟与沉降控制. 岩土工程学报, 33(12): 1950-1956. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112023.htm