In Situ Analysis of Major and Trace Element Compositions of Hydrous Silicate Minerals by LA-ICP-MS
-
摘要: 通过描述一种利用LA-ICP-MS准确测定含水硅酸盐矿物主量元素和微量元素含量的多外标、无内标分析方法.总结出该方法基于矿物化学计量式计算含水硅酸盐矿物中挥发分的相对含量,再将全部分析元素归一化到总金属氧化物含量(100%减含水量)的原理,利用多种天然成分的岩石标准玻璃(如MPI-DING玻璃和USGS玻璃)作为外标进行校正计算.利用该方法对角闪石、绿帘石、电气石和透闪石等含水硅酸盐矿物进行了分析,并与利用电子探针和微钻(直径300 μm)取样溶液-ICP-MS分析的结果进行了对比研究.研究结果表明:对于组成均一的主量元素的分析结果与电子探针分析数据一致,相对偏差集中在5%以内.除了那些分布异常不均一的元素(在300 μm尺度上),对微量元素的分析结果与溶液-ICP-MS分析结果具有很好的一致性,二者之间的相对偏差大部分集中在10%以内.研究结论为采用归一化校正策略,选择MPI-DING和USGS玻璃作为外标,利用LA-ICP-MS微区分析方法可以准确测定含水硅酸盐矿物中的主、微量元素含量.Abstract: This paper presents a calibration strategy for LA-ICP-MS accurate analysis of major and trace elements of hydrous silicate minerals, which is internal standard-independent and applies multiple reference materials for external calibration. The total content of the volatile components in the hydrous silicate minerals was firstly calculated based on the mineral constant stoichiometry. Then, major and trace elements were quantified by calibrating against multiple reference materials (e.g., MPI-DING and USGS glasses) combined with normalization of all metal oxides to the sum of 100% minus the total volatile components. Analyses of amphibole, tremolite, tourmaline as well as epidote by LA-ICP-MS using the calibration strategy match the results of electron microprobe analyses within 5% uncertainty for the major elements which are homogeneous in samples. The results are consistent with the analysis of solution-ICP-MS combined with microsampling (diameter=300 μm) within generally 10% uncertainty for trace elements, except for those elements distributed heterogeneously in the samples. The results show that major and trace elements of hydrous silicate minerals can be accurately analyzed by LA-ICP-MS without applying internal standardization when using MPI-DING and USGS reference glasses as multiple reference materials for calibration.
-
Key words:
- LA-ICP-MS /
- hydrous silicate mineral /
- trace element /
- accurate analysis /
- microsampling /
- geochemsitry
-
图 2 利用LA-ICP-MS分析角闪石AM和绿帘石Ep(a)、电气石Srl和透闪石Tr(b)结果与微钻取样SN-ICP-MS分析数据对比获得主、微量元素的相对偏差(LA-ICP-MS分析采用具有天然成分的岩石玻璃标样作为外标,无内标校正策略)
Fig. 2. Relative deviationsof element concentrations in amphibole AM and epidote Ep (a), tourmaline Srl and tremolite Tr (b) obtained by LA-ICP-MS from the results of solution ICP-MS combined with microsampling
图 6 LA-ICP-MS采用不同校正策略分析角闪石的结果对比
a.同时采用无内标归一化法,分别以具有天然成分岩石玻璃标样(MPI-DING玻璃和USGS玻璃)和NIST610玻璃作为外部校正物质的校正策略分析结果(三次角闪石分析数据);b.当采用Al作为内标元素,以具有天然成分岩石玻璃标样(MPI-DING玻璃和USGS玻璃)为外标校正策略,内标元素在颗粒中分布均一性不同(RSD=3.7%,RSD=10.3%)校正分析角闪石的结果.(相对偏差(=100×(测试值-对比值)/对比值,对比值中主量元素来源于电子探针分析数据,微量元素来源于微钻取样SN-ICP-MS分析数据)
Fig. 6. The analysis results of amphibole by LA-ICP-MS with different calibration strategies
表 1 LA-ICP-MS和溶液ICP-MS操作条件
Table 1. Operation conditions for LA-ICP-MS and solution-ICP-MS analysis
ICP-MS条件 LA-ICP-MS Solution-ICP-MS 仪器 Agilent 7500a Agilent 7500a 射频功率(W) 1 350 1 350 等离子体气(L/min Ar) 14.00 14.00 辅助气(L/min Ar) 0.90 1.00 载气(L/min Ar) - 0.56 补偿气(L/min Ar) 0.92 0.60 采样深度(mm) 5 7 停留时间(ms) 6 100 激光参数 波长(nm) 193 能量密度(J/cm2) 6 载气 He(最优化灵敏度) 剥蚀孔径(μm) 44 频率(Hz) 6 脉冲 300 剥蚀方式 Single spot(单点) 注:通过Dual(脉冲和模拟计数)检测. 表 2 角闪石AM的主(%)、微量(10-6)元素含量
Table 2. The content of the major and trace elements in amphibole
元素 含量 AM2-2 AM2-3 AM4-3 Lasr Sol. EMP Lasr Sol. EMP Lasr Sol. EMP SiO2 29 42.40 - 43.60 42.50 - 44.50 43.70 - 44.70 TiO2 49 1.67 1.66 1.72 1.61 1.72 1.44 0.99 0.97 1.21 Al2O3 27 11.20 11.50 10.90 11.10 12.30 9.90 10.10 10.90 10.10 FeO 57 12.10 11.90 12.30 12.10 12.30 11.90 12.80 12.90 12.70 MnO 55 0.16 0.15 0.11 0.15 0.16 0.15 0.21 0.23 0.16 MgO 25 14.30 14.90 14.30 14.40 15.00 14.90 14.20 16.00 14.10 CaO 42 11.50 - 12.00 11.80 - 12.30 11.80 - 12.20 Na2O 23 2.15 2.04 2.40 2.15 2.20 2.25 1.82 1.87 2.10 K2O 39 0.40 0.40 0.39 0.37 0.41 0.36 0.49 0.56 0.56 P2O5 31 0.02 0.02 - 0.02 0.02 - 0.02 0.03 - Li 7 18.10 16.40 - 14.60 21.60 - 7.06 11.70 - Be 9 0.30 0.30 - 0.18 0.27 - 0.54 0.66 - Sc 45 121.00 132.00 - 123.00 137.00 - 76.50 85.60 - V 51 712.00 726.00 - 700.00 754.00 - 381.00 385.00 - Cr 53 349.00 292.00 - 229.00 255.00 - 163.00 164.00 - Co 59 74.40 105.00 - 75.60 105.00 - 67.60 92.10 - Ni 60 199.00 206.00 - 218.00 229.00 - 127.00 144.00 - Cu 63 3.22 48.80 - 2.74 39.30 - 0.86 88.40 - Zn 66 64.20 84.10 - 63.00 78.80 - 94.00 135 - Rb 85 1.58 2.24 - 1.10 1.85 - 2.89 8.39 - Sr 88 258.00 239.00 - 253.00 251.00 - 163.00 161.00 - Y 89 15.20 16.90 - 15.60 18.20 - 16.10 18.60 - Zr 91 17.50 17.70 - 17.10 20.40 - 24.50 25.40 - Nb 93 1.24 1.44 - 1.10 1.33 - 1.90 2.31 - Sn 118 2.19 30.70 - 2.00 2.43 - 2.16 1.72 - Ba 137 76.90 66.90 - 77.60 70.40 - 54.30 54.90 - La 139 2.17 2.14 - 2.08 2.28 - 3.55 3.57 - Ce 140 9.70 10.70 - 9.78 10.40 - 15.00 14.70 - Pr 141 1.89 1.83 - 1.87 1.99 - 2.86 2.82 - Nd 143 11.20 11.30 - 12.30 12.10 - 15.10 15.90 - Sm 147 3.53 3.68 - 3.78 3.96 - 4.29 4.42 - Eu 151 1.35 1.14 - 1.19 1.23 - 1.36 1.33 - Gd 155 3.34 4.02 - 3.44 4.35 - 3.53 4.30 - Tb 159 0.55 0.61 - 0.53 0.65 - 0.59 0.64 - Dy 163 3.18 3.49 - 3.36 3.76 - 3.41 3.59 - Ho 165 0.63 0.66 - 0.65 0.74 - 0.58 0.70 - Er 166 1.83 1.82 - 1.69 1.97 - 2.03 1.94 - Tm 169 0.19 0.24 - 0.22 0.26 - 0.27 0.27 - Yb 173 1.30 1.29 - 1.26 1.46 - 1.54 1.58 - Lu 175 0.18 0.19 - 0.17 0.20 - 0.20 0.24 - Hf 178 0.77 0.83 - 0.87 1.03 - 1.09 1.20 - Pb 208 2.80 6.65 - 2.45 3.35 - 3.38 4.89 - 注:Laser=LA-ICP-MS分析数据;Sol.=微钻取样溶液ICP-MS分析数据;EMP=电子探针分析数据;LA-ICP-MS分析采用具有天然成分的岩石玻璃标样作为外标,无内标校正策略. 表 3 绿帘石Ep的主(%)、微量(10-6)元素含量
Table 3. The content of the major and trace elements in epidote Ep
元素 含量 Ep5-2-01 Ep5-4-01 Ep6-1-01 Ep Lasr Sol. Lasr Sol. Lasr Sol. EMPA SiO2 29 36.40 - 36.70 - 36.00 - 38.40 TiO2 49 0.04 - 0.08 - 0.20 - - Al2O3 27 24.00 22.00 22.90 24.90 25.40 25.50 24.10 FeO 57 11.60 12.60 12.30 12.60 10.40 11.10 11.30 MnO 55 0.16 - 0.06 - 0.20 - - MgO 25 0.02 0.13 0.09 0.13 0.06 0.28 - CaO 42 23.80 24.00 23.80 24.00 24.00 24.00 24.00 Na2O 23 0.00 0.80 0.00 0.08 0.00 0.43 - K2O 39 0.00 0.60 0.00 0.10 0.00 0.27 - P2O5 31 0.10 0.42 0.02 0.04 0.02 0.07 - Sc 45 2.15 4.43 2.17 2.94 0.96 0.72 - V 51 32.60 37.20 47.50 44.70 51.20 51.40 - Sr 88 1 999.00 2 129.00 2 848.00 2 895.00 411.00 448.00 - Y 89 6.67 9.08 13.30 11.90 8.26 9.18 - Zr 91 12.20 399.40 38.10 55.40 2.65 7.62 - Sn 118 20.40 49.20 18.40 24.10 4.56 10.10 - La 139 6.97 10.81 9.71 9.18 4.79 5.23 - Ce 140 15.50 31.90 22.20 25.20 13.20 24.00 - Pr 141 2.16 2.50 2.69 2.49 1.63 1.97 - Nd 143 12.90 10.90 12.20 10.30 8.55 9.26 - Sm 147 3.19 2.36 2.50 2.14 2.38 2.48 - Eu 151 1.99 2.05 4.87 1.67 1.68 1.55 - Gd 155 2.25 2.09 2.03 1.97 2.03 2.26 - Tb 159 0.26 0.29 0.33 0.30 0.42 0.33 - Dy 163 1.60 1.40 2.78 1.97 1.69 1.61 - Ho 165 0.26 0.32 0.51 0.44 0.20 0.27 - Er 166 0.75 1.34 1.70 1.36 1.37 0.89 - Pb 208 3.52 8.87 2.84 80.10 3.48 21.32 - 注:LA-ICP-MS分析采用具有天然成分的岩石玻璃标样作为外标,无内标校正策略. 表 4 电气石Srl的主(%)、微量(10-6)元素含量
Table 4. The content of the major and trace elements in tourmaline Srl
元素 含量 Srl1-2 Srl1-3 Srl2-1 Lasr Sol. EMP Lasr Sol. EMP Lasr Sol. EMP SiO2 29 34.70 - 36.40 34.80 - 36.20 34.60 - 35.60 TiO2 49 0.63 0.86 0.58 0.83 0.89 1.52 0.71 0.45 0.69 Al2O3 27 29.90 30.50 31.10 29.30 30.50 29.30 29.90 31.60 31.40 FeO 57 9.07 8.09 7.57 8.67 8.69 8.35 8.06 8.06 8.88 MnO 55 0.02 0.02 - 0.02 0.07 0.03 0.02 0.02 - MgO 25 6.05 6.59 7.05 6.71 6.79 7.54 6.86 6.52 6.87 CaO 42 1.31 1.65 1.45 1.60 1.84 2.00 1.55 1.49 1.30 Na2O 23 2.06 2.01 2.07 1.90 1.99 1.62 1.86 1.93 1.81 K2O 39 0.03 0.12 - 0.03 0.06 - 0.02 0.05 - P2O5 31 0.01 0.03 - 0.01 0.01 - 0.01 0.01 - Li 7 47.20 41.60 - 40.80 45.80 - 48.60 34.60 - Be 9 1.27 1.62 - 2.63 1.70 - 1.09 0.93 - Sc 45 11.40 19.20 - 14.90 18.50 - 11.80 17.50 - V 51 86.60 113.00 - 121.00 123.00 - 106.00 103.00 - Cr 53 117.20 209.70 - 171.50 184.40 - 51.90 76.00 - Co 59 0.35 359.00 - 0.43 235.00 - 0.31 175.00 - Ni 60 1.98 7.39 - 5.24 5.60 - 1.23 5.77 - Zn 66 51.40 141.70 - 52.10 56.80 - 60.30 70.80 - Rb 85 0.00 0.81 - 0.09 0.28 - 0.05 0.25 - Sr 88 234.00 271.00 - 304.00 278.00 - 246.00 215.00 - Y 89 0.21 1.07 - 0.22 0.86 - 0.10 0.55 - Zr 91 3.85 10.45 - 5.46 9.49 - 5.66 12.62 - Nb 93 8.39 3.98 - 5.77 3.78 - 2.18 2.41 - Sn 118 222.00 799.00 - 212.00 742.00 - 90.00 697.00 - Sb 121 0.53 2.69 - 1.06 1.05 - 2.25 1.00 - Ba 137 0.38 4.71 - 0.66 2.33 - 1.46 1.67 - La 139 1.79 2.15 - 1.91 2.06 - 1.37 1.83 - Ce 140 2.58 6.36 - 2.87 3.93 - 2.54 4.31 - Pr 141 0.18 0.29 - 0.18 0.28 - 0.13 0.30 - Nd 143 0.60 0.87 - 0.50 0.84 - 0.93 0.92 - Pb 208 2.05 11.01 - 3.09 4.46 - 2.06 3.75 - 注:LA-ICP-MS分析采用具有天然成分的岩石玻璃标样作为外标,无内标校正策略 表 5 透闪石Tr的主(%)、微量(10-6)元素含量
Table 5. The content of the major and trace elements in tremolite Srl
元素 含量 Tr1-1 Tr1-2 Tr2-2 Lasr Sol. EMP Lasr Sol. EMP Lasr Sol. EMP SiO2 29 56.40 - 58.40 56.30 - 58.80 55.60 - 57.90 TiO2 49 0.00 0.01 - 0.00 0.01 - 0.00 0.01 - Al2O3 27 0.21 0.24 0.28 0.15 0.25 0.17 0.28 0.19 0.15 FeO 57 1.54 1.24 1.77 1.53 1.44 1.50 1.49 1.21 1.17 MnO 55 0.11 0.09 - 0.11 0.09 - 0.08 0.08 - MgO 25 24.30 23.00 24.20 24.40 23.60 24.20 24.40 24.70 25.40 CaO 42 13.00 13.30 12.90 13.20 13.30 13.60 13.90 13.30 13.30 Na2O 23 0.19 0.20 - 0.13 0.18 - 0.15 0.15 - K2O 39 0.03 0.07 - 0.02 0.06 - 0.03 0.06 - P2O5 31 0.01 0.01 - 0.01 0.01 - 0.01 0.01 - Li 7 51.30 44.10 - 26.20 84.70 - 33.00 51.40 - Be 9 0.60 0.33 - 0.73 0.71 - 0.43 0.26 - Sc 45 0.84 0.22 - 0.78 0.22 - 0.67 0.16 - V 51 2.44 2.93 - 1.85 2.82 - 2.51 2.21 - Cr 53 1.84 19.40 - 1.91 19.70 - 3.40 18.50 - Co 59 5.82 17.60 - 5.16 16.70 - 1.86 9.81 - Ni 60 2.01 4.98 - 1.47 4.34 - 0.92 3.85 - Zn 66 62.50 96.00 - 65.30 84.00 - 53.00 84.20 - Rb 85 0.87 1.27 - 0.44 1.74 - 0.54 1.14 - Sr 88 44.60 47.60 - 48.80 53.30 - 54.50 50.80 - Y 89 0.31 0.38 - 0.31 0.41 - 0.27 0.38 - Sn 118 8.25 15.20 - 6.18 18.80 - 5.24 24.10 - Sb 121 0.92 1.06 - 0.73 1.27 - 0.69 1.12 - Pb 208 1.39 8.42 - 0.86 9.86 - 0.49 5.77 - 注:LA-ICP-MS分析采用具有天然成分的岩石玻璃标样作为外标,无内标校正策略. -
[1] Basu, A.R., 1978. Trace Elements and Sr-Isotopes in Some Mantle-Derived Hydrous Minerals and Their Significance. Geochimica et Cosmochimica Acta, 42(6): 659-668. doi: 10.1016/0016-7037(78)90084-4 [2] Bleiner, D., Plotnikov, A., Vogt, C., et al., 2000. Depth Profile Analysis of Various Titanium Based Coatings on Steel and Tungsten Carbide Using Laser Ablation Inductively Coupled Plasma—"Time of Flight" Mass Spectrometry. Fresenius Journal of Analytical Chemistry, 368(2-3): 221-226. doi: 10.1007/s002160000417 [3] Cheatham, M.M., Sangrey, W.F., White, W.M., 1993. Sources of Error in External Calibration ICP-MS Analysis of Geological Samples and an Improved Non-Linear Drift Correction Procedure. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(3): 487-506. doi: 10.1016/0584-8547(93)80054-X [4] Chen, L., Liu, Y.S., Hu, Z.C., et al., 2011. Accurate Determinations of Fifty-Four Major and Trace Elements in Carbonate by LA-ICP-MS Using Normalization Strategy of Bulk Components as 100%. Chemical Geology, 284(3-4): 283-295. doi: 10.1016/j.chemgeo.2011.03.007 [5] Chen, Z., 1999. Inter-Element Fractionation and Correction in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. , 14(12): 1823-1828. doi: 10.1039/A903272J [6] Choo, C.O., 2002. Complex Compositional Zoning in Epidote from Rhyodacitic Tuff, Bobae Sericite Deposit, Southeastern Korea. Neues Jahrbuch für Mineralogie-Abhandlungen and Geochemistry, 177(2): 181-197. doi: 10.1127/0077-7757/2002/0177-0181 [7] Durrant, S.F., 1999. Laser Ablation Inductively Coupled Plasma Mass Spectrometry: Achievements, Problems, Prospects. Journal of Analytical Atomic Spectrometry, 14(9): 1385-1403. doi: 10.1039/A901765H [8] Dyar, M.D., Lowe, E.W., Guidotti, C.V., et al., 2002. Fe3+ and Fe2+ Partitioning among Silicates in Metapelites: A Synchrotron Micro-XANES Study. American Mineralogist, 87(4): 514-522. doi: 10.2138/am-2002-0414 [9] Féménias, O., Mercier, J.C.C., Nkono, C., et al., 2006. Calcic Amphibole Growth and Compositions in Calc-Alkaline Magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania). American Mineralogist, 91(1): 73-81. doi: 10.2138/am.2006.1869 [10] Fryer, B.J., Jackson, S.E., Longerich, H.P., 1995. The Design, Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma; Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences. The Canadian Mineralogist, 33(2): 303-312. http://canmin.geoscienceworld.org/content/33/2/303 [11] Günther, D., Hattendorf, B., 2005. Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Trends in Analytical Chemistry, 24(3): 255-265. doi: 10.1016/j.trac.2004.11.017 [12] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards Newsletter, 26(2): 181-196. doi: 10.1111/j.1751-908X.2002.tb00886.x [13] Garvie, L.A.J., Buseck, P.R., 1998. Ratios of Ferrous to Ferric Iron from Nanometre-Sized Areas in Minerals. Nature, 396(6712): 667-670. doi: 10.1038/25334 [14] Grégoire, M., Moine, B.N., O'Reilly, S.Y., et al., 2000. Trace Element Residence and Partitioning in Mantle Xenoliths Metasomatized by Highly Alkaline, Silicate and Carbonate-Rich Melts (Kerguelen Islands, Indian Ocean). Journal of Petrology, 41(4): 477-509. doi: 10.1093/petrology/41.4.477 [15] Grafenstein, U., Erlenkeuser, H., Kleinmann, A., et al., 1994. High-Frequency Climatic Oscillations during the Last Deglaciation as Revealed by Oxygen-Isotope Records of Benthic Organisms (Ammersee, Southern Germany). Journal of Paleolimnology, 11(3): 349-357. doi: 10.1007/BF00677994 [16] Guillong, M., Hametner, K., Reusser, E., et al., 2005. Preliminary Characterisation of New Glass Reference Materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193 nm, 213 nm and 266 nm Wavelengths. Geostandards and Geoanalytical Research, 29(3): 315-331. doi: 10.1111/j.1751-908X.2005.tb00903.x [17] Halicz, L., Günther, D., 2004. Quantitative Analysis of Silicates Using LA-ICP-MS with Liquid Calibration. Journal of Analytical Atomic Spectrometry, 19(12): 1539-1545. doi: 10.1039/B410132D [18] Henry, D.J., Guidotti, C.V., 1985. Tourmaline as a Petrogenetic Indicator Mineral— An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15. http://adsabs.harvard.edu/abs/1985AmMin..70....1H [19] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78(0): 50-57. doi: 10.1016/j.sab.2012.09.007 [20] Humayun, M., Davis, F.A., Hirschmann, M.M., 2010. Major Element Analysis of Natural Silicates by Laser Ablation ICP-MS. J. Anal. At. Spectrom. , 25(7): 998-1005. doi: 10.1039/C001391A [21] Jackson, S.E., Longerich, H.P., Dunning, G.R., et al., 1992. The Application of Laser-Ablation Microprobe; Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to In Situ Trace-Element Determinations in Minerals. The Canadian Mineralogist, 30(4): 1049-1064. [22] Jarvis, K.E., Williams, J.G., 1993. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS): A Rapid Technique for the Direct, Quantitative Determination of Major, Trace and Rare-Earth Elements in Geological Samples. Chemical Geology, 106(3-4): 251-262. doi: 10.1016/0009-2541(93)90030-M [23] Jiang, W.B., Zhang, L.F., 2001. The PTt Path Calculation of Blueschists on the Compositional Zonings of Sodic Amphiboles: An Example from Aksu Precambrian Blueschlsts of Xinjiang. Acta Petrologica Sinica, 17(3): 469-475(in Chinese with English abstract). [24] Jochum, K.P., Willbold, M., Raczek, I., et al., 2005. Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards and Geoanalytical Research, 29(3): 285-302. doi: 10.1111/j.1751-908X.2005.tb00901.x [25] Jochum, K.P., Stoll, B., Herwig, K., et al., 2006a. Validation of LA-ICP-MS Trace Element Analysis of Geological Glasses Using a New Solid-State 193 nm Nd: YAG Laser and Matrix-Matched Calibration. J. Anal. At. Spectrom. , 22(2): 112-121. doi: 10.1039/B609547J [26] Jochum, K.P., Stoll, B., Herwig, K., et al., 2006b. MPI-DING Reference Glasses for In Situ Microanalysis: New Reference Values for Element Concentrations and Isotope Ratios. Geochemistry, Geophysics, Geosystems, 7(2): Q02008. doi: 10.1029/2005GC001060 [27] Jochum, K.P., Willbold, M., 2006. Reference Materials in Geoanalytical Research—Review for 2004 and 2005. Geostandards and Geoanalytical Research, 30(3): 143-156. doi: 10.1111/j.1751-908X.2006.tb01057.x [28] Kilinc, A., Carmichael, I.S.E., Rivers, M.L., et al., 1983. The Ferric-Ferrous Ratio of Natural Silicate Liquids Equilibrated in Air. Contributions to Mineralogy and Petrology, 83(1-2): 136-140. doi: 10.1007/BF00373086 [29] Kroslakova, I., Günther, D., 2007. Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry: Evidence for Mass Load Induced Matrix Effects in the ICP during Ablation of a Silicate Glass. J. Anal. At. Spectrom. , 22(1): 51-62. doi: 10.1039/B606522H [30] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [31] Liu, Y.S., Hu, Z.C., Li, M., et al., 2013. Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples. Chinese Science Bulletin, 32: 1-16. [32] Longerich, H.P., Günther, D., Jackson, S.E., 1996a. Elemental Fractionation in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Fresenius' Journal of Analytical Chemistry, 355(5-6): 538-542. doi: 10.1007/s0021663550538 [33] Longerich, H.P., Jackson, S.E., Günther, D., 1996b. Inter-Laboratory Note, Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation. Journal of Analytical Atomic Spectrometry, 11(9): 899-904. doi: 10.1039/JA9961100899 [34] Mank, A.J.G., Mason, P.R.D., 1999. A Critical Assessment of Laser Ablation ICP-MS as an Analytical Tool for Depth Analysis in Silica-Based Glass Samples. J. Anal. At. Spectrom. , 14(8): 1143-1153. doi: 10.1039/A903304A [35] Pearce, N.J.G., Perkins, W.T., Westgate, J.A., et al., 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter, 21(1): 115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x [36] Raeburn, S.P., Ilton, E.S., Veblen, D.R., 1997. Quantitative Determination of the Oxidation State of Iron in Biotite Using X-ray Photoelectron Spectroscopy: Ⅱ. In Situ Analyses. Geochimica et Cosmochimica Acta, 61(21): 4531-4537. doi: 10.1016/S0016-7037(97)00264-0 [37] Slack, J.F., Trumbull, R.B., 2011. Tourmaline as a Recorder of Ore-Forming Processes. Elements, 7(5): 321-326. doi: 10.2113/gselements.7.5.321 [38] Trumbull, R.B., Slack, J.F., Krienitz, M.S., et al., 2011. Fluid Sources and Metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE District, Idaho, U.S.A. : Insights from Major-Element and Boron Isotopic Compositions of Tourmaline. The Canadian Mineralogist, 49(1): 225-244. doi: 10.3749/canmin.49.1.225 [39] Yang, Y., Chen, N.S., Lu, Q., et al., 1994. Characteristics of Composition Zoing of Garnet and Amphibole and Metamophic Processes of Garnet-Amphibole Rock from Songshugou Area, Shangnan Shaanxi Province. Acta Petrologica Sinica, 10(4): 401-412 (in Chinese with English abstract). http://www.researchgate.net/publication/328702417_Characteristics_of_composition_zoning_of_garnet_and_amphibole_and_metamorphic_processes_of_garnet-amphibole_rocks_from_Songshugou_area_Shangnan_Saanxi_Province [40] Zhu, L.Y., Liu, Y.S., Hu, Z.C., et al., 2012. Simultaneous Determination of Major and Trace Elements in Fused Volcanic Rock Powders Using a Hermetic Vessel Heater and LA-ICP-MS. Geostandards and Geoanalytical Research, 37(2): 207-229. doi: 10.1111/j.1751-908x.2012.00181.x [41] 姜文波, 张立飞, 2001. 利用钠质角闪石成分环带计算蓝片岩的PTt轨迹——以新疆阿克苏前寒武纪蓝片岩为例. 岩石学报, 17(3): 469-475. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103015.htm [42] 杨勇, 陈能松, 陆琦, 等, 1994. 松树沟榴闪岩中的石榴石和角闪石成分环带特征及岩石变质过程. 岩石学报, 10(4): 401-412. doi: 10.3321/j.issn:1000-0569.1994.04.001