• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义

    张硕 史洪峰 郝海健 李德威 吝岩 冯旻譞

    张硕, 史洪峰, 郝海健, 李德威, 吝岩, 冯旻譞, 2014. 青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义. 地球科学, 39(5): 509-524. doi: 10.3799/dqkx.2014.049
    引用本文: 张硕, 史洪峰, 郝海健, 李德威, 吝岩, 冯旻譞, 2014. 青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义. 地球科学, 39(5): 509-524. doi: 10.3799/dqkx.2014.049
    Zhang Shuo, Shi Hongfeng, Hao Haijian, Li Dewei, Lin Yan, Feng Minxuan, 2014. Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet. Earth Science, 39(5): 509-524. doi: 10.3799/dqkx.2014.049
    Citation: Zhang Shuo, Shi Hongfeng, Hao Haijian, Li Dewei, Lin Yan, Feng Minxuan, 2014. Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet. Earth Science, 39(5): 509-524. doi: 10.3799/dqkx.2014.049

    青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义

    doi: 10.3799/dqkx.2014.049
    基金项目: 

    中国地质调查局西藏1∶5万聂拉木等4幅区域地质调查 1212011121242

    中国地质调查局西藏1∶5万日土县卡易错地区4幅区域地质调查 1212011121246

    详细信息
      作者简介:

      张硕(1989-),男,硕士在读,主要从事大陆动力学、构造地质学的研究.E-mail: shuoz13@sina.cn

      通讯作者:

      李德威,E-mail:dewei89@sina.com

    • 中图分类号: P588.121;P597.3

    Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet

    • 摘要: 青藏高原西部班公湖地区的日松岩体和甲维酸性岩脉位于班公湖蛇绿混杂岩带南侧,岩石类型为英云闪长岩,花岗闪长玢岩和花岗闪长岩,显示中钾钙碱性-高钾钙碱性过渡的特征.元素地球化学组成表明,岩石均具有埃达克岩特征,表现为高的SiO2(63.05%~70.72%)、高Al2O3(≥15%)、低MgO(0.97%~2.33%)<3%、高Sr含量(380.4×10-6~625.0×10-6)、Sr/Y(>35)、低HREE、Y(5.64×10-6~13.80×10-6)和Yb(0.46×10-6~1.25×10-6),轻重稀土分异明显(17.09<(La/Yb)N<48.51).日松花岗闪长岩体LA-ICP-MS锆石U-Pb年龄为82.0±1.1 Ma;甲维近东西走向的花岗闪长岩脉和近南北走向的花岗闪长玢岩脉LA-ICP-MS锆石U-Pb年龄分别为90.7±1.2 Ma和82.9±1.2 Ma.日松和甲维处埃达克岩均富钾贫钠,低Cr、Ni,高Th、Th/La、Th/U、Rb/Sr以及相对低的Sr/Y和高Mg#(43.09~54.35)等特征显示其为玄武质岩浆底侵加厚下地壳部分熔融形成.91~82 Ma的埃达克岩形成于后碰撞初期阶段,为中特提斯洋闭合后板内热隆伸展、壳幔相互作用的产物,可以作为班公湖地区由板块构造体制转向板内构造体制的标志.

       

    • 图  1  西藏班公湖地区地质

      a.构造背景图,据李德威,2003;b中80 Ma和96 Ma年龄为埃达克岩锆石年龄,数据参考Zhao et al., 2008张向飞,2011;86 Ma、89 Ma为辉绿岩脉锆石年龄;1.早白垩世灰岩;2.晚侏罗世-早白垩世砂板岩;3.古近纪火山岩;4.晚白垩世花岗岩;5.早白垩世花岗岩;6.晚白垩世二长花岗岩;7.砾岩;8.蛇绿混杂岩;9.晚白垩世花岗闪长岩;10.晚白垩世英云闪长岩;11.角度不整合;12.韧性剪切带;13.地质界线;14.断层;15.辉绿岩脉;16.酸性岩脉;17.蛇绿混杂岩带;18.采样点;19.测年位置;20.测年结果(Ma)

      Fig.  1.  Simplified geological map of Bangong Lake, Tibet

      图  2  日松岩体和甲维岩脉样品显微照片(正交偏光)

      Q.石英;Pl.斜长石;Kf.钾长石;Bi.黑云母;Am.角闪石;Se.绢云母;a.英云闪长岩;b.花岗闪长岩(日松岩体);c.花岗闪长岩(甲维岩脉);d.花岗闪长玢岩

      Fig.  2.  Photomicrographs of samples

      图  3  花岗岩实际矿物含量QAP分类(a)、全碱-硅(b)和K2O-SiO2关系(c)(Irvine and Baragar, 1971; Peccerillo and Taylor, 1976; Streckeisen, 1976)

      1.富石英花岗岩;2.碱长花岗岩;3a.花岗岩;3b.二长花岗岩;4.花岗闪长岩;5.英云闪长岩

      Fig.  3.  Relations of QAP、SiO2 vs. (Na2O+K2O) and K2O vs. SiO2

      图  4  日松岩体和甲维岩脉稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化(b)(图例参考图 3,下同)(Sun and McDonough, 1989)

      Fig.  4.  REE distribution pattens (a) and primitive mantle normalized incompatible element spidergram (b) of Risong rock mass and Jiawei dykes

      图  5  日松花岗闪长岩体(样品号B214-8-2)中结晶的锆石阴极发光(a)和U-Pb年龄协和图(b)

      Fig.  5.  Magmatic euhedral zircon CL images (a) and U-Pb concordant diagram (b) of granodiorite (Sample B214-8-2) in Risong

      图  6  甲维花岗闪长玢岩脉(样品号D4494-16)中结晶的锆石阴极发光(a)和U-Pb年龄协和图(b)

      Fig.  6.  Magmatic euhedral zircon CL images (a) and U-Pb concordant diagram (b) of corcovadite-dykes (Sample D4494-16) in Jiawei

      图  7  甲维花岗闪长岩脉(样品号D4494-8)中结晶的锆石阴极发光(a)和U-Pb年龄协和图(b)

      Fig.  7.  Magmatic euhedral zircon CL images (a) and U-Pb concordant diagram (b) of granodiorite-dykes (Sample D4494-8) in Jiawei

      图  8  日松岩体和甲维花岗闪长(玢)岩脉(La/Yb)N-YbN(a)和Sr/Y-Y判别(b)(Defant and Drummond, 1990Martin et al., 2005)

      Fig.  8.  Plots of (La/Yb)N vs YbN (a) and Sr/Y vs Y for the Risong rockmass and Jiawei granodiorite (corcovadite) dykes from Bangong Lake

      图  9  日松岩体和甲维花岗闪长(玢)岩脉N-MORB标准化的微量元素配分

      注:俯冲板片熔融成因埃达克岩数据参考Defant and Drummond, 1990; Kay et al., 1993; Stern and Kilian, 1996.藏南埃达克岩数据参考Chung et al., 2003

      Fig.  9.  N-MORB normalized incompatible element spider ram for Risong rockmass and Jiawei anodiorite (corcovadite) dykes

      图  10  班公湖晚白垩世埃达克岩La/Yb vs.La (a)(Chung et al., 2009)和Y+Nb vs. Rb(b)(Pearce, 1996)

      Fig.  10.  The La/Yb vs.La diagram and Y+Nb vs. Rb diagram of late Cretaceous adakites from Bangong Lake zone

      图  11  班公湖91~82 Ma埃达克岩成岩模式示意

      1.陆壳;2.蛇绿混杂岩;3.基性岩脉;4.埃达克岩;5.玄武质岩浆;6.竟柱山组;7.地幔;8.正断层

      Fig.  11.  The diagenetic model map of 91~82 Ma adakites from Bangong Lake zone

      表  1  日松岩体和甲维岩脉主量元素(%)和微量元素(10-6)化学组成

      Table  1.   Major elements (%) and trace elements (10-6) compositions of Risong rock mass and Jiawei dykes

      样品号 甲维花岗闪长岩脉 甲维花岗闪长玢岩脉
      D4494-2 D4494-3 D4494-4 D4494-5 D4494-6 D4494-7 D4494-10 D4494-11 D4494-12 D4494-13 D4494-14 D4494-15
      SiO2 70.07 70.72 69.67 69.55 69.88 69.83 65.07 65.02 65.74 65.64 65.92 65.36
      TiO2 0.42 0.40 0.43 0.40 0.41 0.42 0.65 0.65 0.66 0.60 0.61 0.60
      Al2O3 15.25 15.16 15.02 15.13 15.13 15.31 15.40 15.52 15.66 15.41 15.41 15.31
      Fe2O3 0.98 0.85 0.96 1.06 0.97 1.11 0.84 0.70 0.93 0.68 0.64 0.73
      FeO 1.37 1.33 1.35 1.35 1.28 1.28 2.55 2.67 2.48 2.42 2.42 2.35
      MnO 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05
      MgO 0.97 0.89 1.03 0.99 0.97 0.98 1.97 1.99 2.00 1.79 1.78 1.80
      CaO 1.71 2.21 2.22 2.24 1.98 2.06 3.91 3.91 3.65 3.33 3.29 3.59
      Na2O 4.01 3.55 3.90 3.75 3.75 4.11 4.10 4.18 4.05 4.06 3.96 3.93
      K2O 2.68 2.73 2.50 2.61 2.67 2.58 2.67 2.38 2.32 2.50 2.42 2.48
      P2O5 0.12 0.12 0.13 0.13 0.13 0.13 0.19 0.20 0.20 0.19 0.18 0.18
      LOI 2.02 1.74 2.48 2.36 2.42 1.81 2.34 2.15 1.88 2.65 2.76 2.99
      Total 99.64 99.74 99.73 99.61 99.63 99.66 99.74 99.42 99.62 99.32 99.44 99.37
      Mg# 43.43 43.09 45.33 43.37 44.54 43.39 51.51 51.81 51.80 51.28 51.43 51.62
      Ba 456.70 478.50 424.60 471.80 450.50 484.20 394.30 353.80 364.80 370.90 384.90 378.20
      Sc 4.16 4.05 4.24 4.09 4.12 4.11 7.15 7.45 7.45 7.16 7.25 6.80
      V 38.34 39.80 38.62 37.97 38.45 38.95 63.10 66.56 64.92 61.16 59.99 57.53
      Cr 18.50 20.30 16.04 17.93 16.78 16.29 34.30 39.79 40.11 32.41 26.87 31.64
      Co 5.39 5.52 5.47 5.56 5.45 5.75 9.88 10.11 10.97 9.57 9.44 9.30
      Ni 11.52 12.16 12.42 11.55 10.99 11.79 30.15 31.64 31.60 29.37 28.37 27.43
      Cu 30.99 23.29 25.23 29.32 27.88 28.38 29.38 31.07 35.35 25.18 25.93 30.13
      Zn 70.71 83.12 79.86 62.28 77.66 64.93 47.09 47.50 52.82 42.67 43.44 41.66
      Rb 80.90 82.05 75.40 81.08 88.06 74.12 83.07 79.64 89.72 82.75 84.06 79.93
      Sr 450.00 464.60 442.60 455.60 402.10 490.00 432.80 427.80 413.80 400.10 380.40 381.70
      Nb 9.36 9.26 8.52 8.59 9.36 8.62 11.96 9.85 11.32 10.63 11.10 11.12
      Ta 0.94 0.84 0.80 0.95 0.93 0.75 1.22 0.82 1.18 1.00 1.01 1.04
      Zr 190.30 193.80 187.40 184.50 191.00 189.80 173.50 172.70 174.00 166.80 161.80 167.20
      Hf 5.80 5.90 5.60 5.40 5.80 5.70 4.60 4.40 4.40 4.40 4.40 4.40
      U 2.06 2.21 2.03 2.05 2.08 2.08 2.42 2.05 2.15 2.65 2.57 2.47
      Th 9.15 9.02 8.20 8.12 8.34 8.28 9.62 8.06 8.88 9.75 9.61 9.29
      Y 6.81 5.70 5.76 5.68 5.64 5.68 10.60 10.46 10.31 10.68 10.78 10.27
      REE(10-6) - - - - - - - - - - - -
      La 31.01 29.93 30.84 31.37 31.02 30.88 31.19 30.14 29.91 29.61 30.26 29.06
      Ce 52.66 49.34 50.26 51.06 50.48 49.38 56.82 55.06 52.03 54.22 55.60 52.89
      Pr 5.04 4.80 4.90 4.99 4.94 4.94 5.99 5.82 5.83 5.71 5.83 5.63
      Nd 16.94 16.11 16.45 16.67 16.36 16.45 21.11 20.57 20.61 20.19 20.51 19.88
      Sm 2.90 2.71 2.76 2.77 2.77 2.83 3.83 3.64 3.75 3.66 3.65 3.56
      Eu 0.83 0.85 0.84 0.87 0.84 0.86 1.04 1.02 1.02 0.96 0.97 0.96
      Gd 2.37 2.23 2.22 2.16 2.12 2.20 3.10 3.05 2.96 3.03 2.89 2.97
      Tb 0.32 0.28 0.29 0.29 0.29 0.29 0.44 0.45 0.45 0.43 0.44 0.43
      Dy 1.54 1.32 1.36 1.38 1.32 1.36 2.31 2.33 2.30 2.29 2.32 2.22
      Ho 0.27 0.22 0.23 0.22 0.22 0.22 0.41 0.41 0.41 0.41 0.41 0.40
      Er 0.71 0.56 0.58 0.56 0.56 0.57 1.12 1.11 1.11 1.16 1.16 1.13
      Tm 0.11 0.08 0.08 0.08 0.08 0.08 0.17 0.17 0.17 0.17 0.18 0.17
      Yb 0.60 0.46 0.46 0.49 0.48 0.48 1.02 1.00 1.00 1.07 1.06 1.03
      Lu 0.09 0.07 0.07 0.07 0.07 0.08 0.16 0.15 0.15 0.17 0.17 0.16
      ΣREE 115.39 108.94 111.35 112.99 111.54 110.61 128.72 124.92 121.68 123.08 125.43 120.50
      δEu 0.94 1.03 1.01 1.05 1.01 1.01 0.90 0.91 0.91 0.86 0.88 0.88
      Dy/Yb 2.58 2.89 2.99 2.82 2.75 2.86 2.27 2.33 2.30 2.14 2.20 2.15
      样品号 日松花岗闪长岩体 日松英云闪长岩体
      B202-1-1 B214-8-2 B214-7-4 B214-7-2 B214-8-1 B214-9-1 B215-12-1 B214-1-1a B212-3-1
      SiO2 66.08 64.58 65.32 64.45 64.43 65.11 63.05 64.66 65.22
      TiO2 0.57 0.64 0.61 0.74 0.70 0.69 0.83 0.73 0.71
      Al2O3 16.59 16.47 15.90 16.36 16.16 16.09 16.73 16.29 16.08
      Fe2O3 0.43 0.48 0.48 0.54 0.52 0.50 0.59 0.53 0.51
      FeO 2.43 2.71 2.73 3.07 2.92 2.86 3.33 3.03 2.91
      MnO 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05
      MgO 1.63 2.08 1.82 2.24 2.13 2.04 2.33 2.11 2.29
      CaO 3.90 3.00 3.86 4.37 3.83 3.26 4.65 3.94 3.60
      Na2O 4.22 4.27 3.75 3.95 3.97 4.10 3.99 4.02 4.01
      K2O 2.65 2.64 2.62 1.95 2.31 2.23 2.22 2.18 2.14
      P2O5 0.19 0.23 0.21 0.24 0.23 0.22 0.26 0.24 0.23
      LOI 1.00 1.93 1.67 1.44 1.90 2.20 1.19 1.91 1.80
      Total 100.15 99.52 99.46 99.89 99.63 99.83 99.76 100.20 100.05
      Mg# 50.38 53.79 50.25 52.53 52.48 51.93 51.48 51.35 54.35
      Ba 419.00 373.00 387.00 375.00 466.00 409.00 396.00 551.00 433.00
      Sc 6.00 7.00 6.00 7.00 7.00 7.00 8.00 8.00 7.00
      V 70.00 68.00 61.00 72.00 67.00 64.00 78.00 70.00 67.00
      Cr 30.00 40.00 50.00 40.00 40.00 50.00 50.00 50.00 40.00
      Co 9.00 10.00 9.00 12.00 10.00 10.00 12.00 11.00 9.00
      Ni 25.00 24.00 23.00 25.00 25.00 26.00 29.00 25.00 26.00
      Cu 24.00 26.00 30.00 27.00 26.00 30.00 19.00 31.00 29.00
      Zn 46.00 48.00 47.00 53.00 53.00 52.00 63.00 54.00 54.00
      Rb 82.70 99.90 76.80 55.90 61.90 68.60 74.80 64.60 52.40
      Sr 447.00 527.00 480.00 519.00 614.00 625.00 599.00 507.00 546.00
      Nb 12.10 11.80 12.40 12.90 13.20 13.10 14.50 13.30 12.80
      Ta 0.90 0.90 0.90 0.90 0.90 1.00 0.80 0.90 0.90
      Zr 166.00 160.00 199.00 192.00 192.00 175.00 184.00 202.00 200.00
      Hf 4.50 4.20 5.00 4.60 4.70 4.30 4.40 5.10 5.10
      U 1.04 1.76 2.06 1.39 1.39 1.14 1.24 1.29 1.73
      Th 4.79 7.73 12.2 8.99 9.85 10.45 7.87 9.53 11.05
      Y 11.10 11.80 10.90 13.20 13.40 13.30 13.80 12.80 12.70
      REE(10-6) - - - - - - - - -
      La 27.40 27.00 35.10 31.50 34.50 31.80 34.50 30.80 32.40
      Ce 48.10 50.30 62.90 58.70 63.20 60.30 64.20 58.70 59.40
      Pr 4.96 5.52 6.55 6.26 6.73 6.23 6.84 6.25 6.20
      Nd 17.40 19.90 22.20 21.80 23.30 22.00 24.00 22.00 21.70
      Sm 2.91 3.41 3.83 3.94 4.03 3.88 4.26 4.00 3.84
      Eu 1.09 1.08 1.15 1.22 1.21 1.18 1.39 1.21 1.13
      Gd 2.70 3.09 3.17 3.24 3.41 3.28 3.58 3.35 3.21
      Tb 0.38 0.43 0.43 0.48 0.48 0.50 0.51 0.48 0.46
      Dy 2.18 2.33 2.21 2.52 2.59 2.69 2.72 2.57 2.52
      Ho 0.41 0.43 0.44 0.51 0.54 0.54 0.56 0.51 0.51
      Er 1.14 1.19 1.16 1.38 1.38 1.43 1.41 1.36 1.35
      Tm 0.17 0.16 0.17 0.18 0.20 0.20 0.19 0.19 0.19
      Yb 1.15 1.07 0.96 1.19 1.23 1.25 1.21 1.16 1.21
      Lu 0.16 0.15 0.15 0.18 0.18 0.18 0.17 0.17 0.18
      ΣREE 110.15 116.06 140.42 133.10 142.98 135.46 145.54 132.75 134.3
      δEu 1.17 1.00 0.98 1.01 0.97 0.98 1.06 0.98 0.96
      Dy/Yb 1.90 2.18 2.12 2.30 2.11 2.15 2.25 2.22 2.08
      注:Mg#=molar100(Mg/(Mg+Fe2+),FeO=FeO+0.899 8 Fe2O3δEu=2×EuN/(SmN+GdN),EuN,SmN,GdN为球粒陨石标准化.
      下载: 导出CSV

      表  2  班公湖日松岩体和甲维岩脉LA-ICP-MS锆石U-Pb同位素年代学分析结果

      Table  2.   LA-ICP-MS U-Pb zircon age data of Risong rock mass and Jiawei dykes from Bangong Lake

      点号 Pb
      (10-6)
      Th
      (10-6)
      U
      (10-6)
      Th/U 207Pb/206Pb 207Pb235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ
      B214-8-2-1 15.67 309.37 241.99 1.28 0.047 05 0.003 54 0.088 05 0.006 90 0.013 33 0.000 21 50.1 170.3 85.7 6.4 85.3 1.4
      B214-8-2-2 14.26 201.42 585.81 0.34 0.050 33 0.001 88 0.091 22 0.003 32 0.013 27 0.000 16 209.3 87.0 88.6 3.1 85.0 1.0
      B214-8-2-3 9.31 161.29 219.06 0.74 0.048 95 0.003 64 0.089 21 0.006 57 0.013 28 0.000 20 146.4 162.9 86.8 6.1 85.0 1.3
      B214-8-2-4 7.42 129.45 155.30 0.83 0.054 56 0.004 46 0.094 32 0.007 75 0.012 79 0.000 20 394.5 185.2 91.5 7.2 81.9 1.3
      B214-8-2-5 30.21 682.52 578.99 1.18 0.050 71 0.002 10 0.087 20 0.003 40 0.012 61 0.000 15 227.8 96.3 84.9 3.2 80.8 0.9
      B214-8-2-6 45.97 540.58 1 823.82 0.30 0.054 83 0.001 45 0.096 61 0.002 61 0.012 74 0.000 13 405.6 59.3 93.6 2.4 81.6 0.8
      B214-8-2-7 16.81 356.98 419.82 0.85 0.047 81 0.002 01 0.082 44 0.003 25 0.012 61 0.000 14 100.1 87.0 80.4 3.0 80.8 0.9
      B214-8-2-8 16.03 318.85 364.54 0.87 0.053 58 0.003 09 0.095 13 0.005 11 0.013 24 0.000 21 353.8 131.5 92.3 4.7 84.8 1.3
      B214-8-2-9 11.35 213.13 293.19 0.73 0.048 12 0.003 19 0.082 87 0.005 31 0.012 72 0.000 16 105.6 148.1 80.8 5.0 81.5 1.0
      B214-8-2-10 19.46 420.81 409.30 1.03 0.048 91 0.002 53 0.087 04 0.004 30 0.013 08 0.000 17 142.7 122.2 84.7 4.0 83.8 1.1
      B214-8-2-11 21.43 463.06 377.23 1.23 0.060 87 0.002 78 0.106 91 0.004 80 0.012 77 0.000 15 635.2 100.0 103.1 4.4 81.8 0.9
      B214-8-2-12 24.45 398.72 1 006.57 0.40 0.051 98 0.001 70 0.089 58 0.002 73 0.012 56 0.000 12 283.4 78.7 87.1 2.5 80.5 0.8
      B214-8-2-13 16.16 263.75 646.62 0.41 0.047 52 0.001 55 0.082 46 0.002 68 0.012 57 0.000 11 76.0 74.1 80.5 2.5 80.5 0.7
      D4494-8-1 9.86 261.57 260.47 1.00 0.046 61 0.003 33 0.092 37 0.006 79 0.014 25 0.000 18 27.9 162.9 89.7 6.3 91.2 1.1
      D4494-8-2 39.48 1 827.45 554.65 3.29 0.054 55 0.002 59 0.104 08 0.004 65 0.013 92 0.000 15 394.5 107.4 100.5 4.3 89.1 0.9
      D4494-8-3 12.06 323.25 318.56 1.01 0.052 84 0.003 11 0.100 44 0.005 66 0.013 96 0.000 20 320.4 130.5 97.2 5.2 89.4 1.3
      D4494-8-4 10.39 256.42 325.01 0.79 0.047 41 0.002 67 0.088 17 0.004 67 0.013 80 0.000 18 77.9 120.4 85.8 4.4 88.4 1.1
      D4494-8-5 9.48 225.12 277.75 0.81 0.052 90 0.003 47 0.104 61 0.006 84 0.014 34 0.000 17 324.1 154.6 101.0 6.3 91.8 1.1
      D4494-8-6 9.93 203.73 287.97 0.71 0.057 12 0.002 84 0.112 63 0.005 49 0.014 44 0.000 17 494.5 113.9 108.4 5.0 92.4 1.1
      D4494-8-7 14.59 332.91 441.36 0.75 0.057 67 0.002 89 0.114 71 0.005 87 0.014 45 0.000 16 516.7 83.3 110.3 5.3 92.5 1.0
      D4494-8-8 20.17 622.68 457.08 1.36 0.067 18 0.003 37 0.131 86 0.006 46 0.014 30 0.000 17 842.6 99.8 125.8 5.8 91.6 1.1
      D4494-8-9 14.57 411.75 391.98 1.05 0.054 48 0.002 88 0.105 03 0.005 39 0.014 06 0.000 14 390.8 86.1 101.4 5.0 90.0 0.9
      D4494-16-1 7.31 129.25 152.40 0.85 0.050 77 0.004 62 0.085 15 0.006 95 0.012 77 0.000 24 231.6 211.1 83.0 6.5 81.8 1.6
      D4494-16-2 7.02 101.65 153.58 0.66 0.047 34 0.004 50 0.083 71 0.007 61 0.013 25 0.000 23 64.9 214.8 81.6 7.1 84.9 1.4
      D4494-16-3 9.22 146.52 174.75 0.84 0.048 19 0.004 66 0.088 68 0.008 50 0.013 43 0.000 25 109.4 214.8 86.3 7.9 86.0 1.6
      D4494-16-4 8.49 133.78 204.38 0.65 0.050 00 0.002 69 0.089 55 0.004 74 0.013 26 0.000 23 194.5 128.7 87.1 4.4 84.9 1.5
      D4494-16-5 22.71 400.26 385.24 1.04 0.058 33 0.002 94 0.106 30 0.005 31 0.012 76 0.000 14 542.6 111.1 102.6 4.9 81.7 0.9
      D4494-16-6 4.90 67.12 99.32 0.68 0.048 21 0.005 20 0.086 07 0.009 41 0.013 24 0.000 29 109.4 237.0 83.8 8.8 84.8 1.8
      D4494-16-7 7.88 120.02 155.38 0.77 0.052 55 0.004 56 0.088 07 0.007 37 0.012 49 0.000 22 309.3 198.1 85.7 6.9 80.0 1.4
      D4494-16-8 5.85 83.19 126.02 0.66 0.049 71 0.005 09 0.087 54 0.008 42 0.013 44 0.000 28 189.0 277.7 85.2 7.9 86.0 1.8
      D4494-16-9 7.23 119.13 178.71 0.67 0.050 20 0.003 81 0.089 09 0.006 82 0.013 19 0.000 23 211.2 177.8 86.7 6.4 84.5 1.4
      D4494-16-10 13.05 244.50 256.34 0.95 0.047 81 0.002 90 0.080 02 0.004 74 0.012 35 0.000 18 100.1 127.8 78.2 4.5 79.1 1.2
      D4494-16-11 13.18 190.87 305.64 0.62 0.049 66 0.002 96 0.089 50 0.005 11 0.013 37 0.000 20 189.0 143.5 87.0 4.8 85.6 1.3
      D4494-16-12 5.13 80.65 109.52 0.74 0.050 52 0.005 67 0.085 02 0.009 63 0.012 75 0.000 23 220.4 240.7 82.9 9.0 81.7 1.5
      D4494-16-13 3.67 53.89 86.74 0.62 0.049 73 0.013 07 0.088 68 0.022 66 0.012 67 0.000 34 189.0 512.9 86.3 21.1 81.2 2.1
      D4494-16-14 5.75 93.85 150.69 0.62 0.049 31 0.004 17 0.086 92 0.007 66 0.012 97 0.000 22 161.2 188.9 84.6 7.2 83.1 1.4
      D4494-16-15 33.93 592.28 618.78 0.96 0.061 54 0.003 06 0.107 40 0.004 76 0.012 97 0.000 17 657.4 107.4 103.6 4.4 83.1 1.1
      下载: 导出CSV
    • [1] Atherton, M.P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362: 144-146. doi: 10.1038/362144a0
      [2] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contrib. Mineral. Petrol. , 143: 602-622. doi: 10.1007/s00410-002-0364-7
      [3] Cai, Z.Y., Qiu, R.Z., Xiong, X.L., et al., 2005. The Adakite-Like Intrusive Rocks Characteristics of Western Tibet and Their Prospecting Significance. Geotectonica et Metallogenia, 29(4): 491-501 (in Chinese with English abstract). http://www.researchgate.net/publication/288609829_The_adakite-like_intrusive_rocks_characteristics_of_western_Tibet_and_their_prospecting_significance
      [4] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134: 33-51. doi: 10.1007/s004100050467
      [5] Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constrains from Post-Collisional Adakites. Tectonophysics, 477: 36-48. doi: 10.1016/j.tecto.2009.08.008
      [6] Chung, S.L., Liu, D., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 11: 1021-1024. doi: 10.1130/G19796.1
      [7] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. doi: 10.1038/347662a0
      [8] Defant, M.J., Drummond, M.S., 1993. Potential Example of the Partial Melting of the Subducted Lithosphere in Volcanic Arc. Geology, 21: 547-550. doi: 10.1130/0091-7613(1993)021
      [9] Gao, S., Roberta, L.R., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. doi: 10.1038/nature03162
      [10] Garrison, J.M., Davidson, J.P., 2003. Dubious Case for Slab Melting in the Northern Volcanic Zone of the Andes. Geology, 31: 565-568. doi: 10.1130/0091-7613(2003)031
      [11] Guynn, J.H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks near Amdo "Missing" Reveal Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34(6): 505-508. doi: 10.1130/G22453.1
      [12] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220: 139-155. doi: 10.1016/S0012-821X(04)00007-X
      [13] Irvine, T.N., Baragar, W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Science, 8: 523-548. doi: 10.1139/e71-055
      [14] Jiang, J.H., Wang, R.J., Qu, X.M., et al., 2011. Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, after the Closure of the Tethys Oceanic Basin. Earth Science—Journal of China University of Geosciences, 36(6): 1021-1032(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201106008.htm
      [15] Kang, L., Xiao, P.X., Gao, X.F., et al., 2012. The Age and Origin of the Konjirap Pluton in Northwestern Tibetan Plateau and Its Tectonic Significances. Acta Geologica Sinica, 86(7): 1063-1076(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe201207003.htm
      [16] Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008. Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block: Products of Southward Subducting of the Slainajap Ocean? Acta Petrologica Sinica, 24(2): 303-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200802012.htm
      [17] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block: Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10): 3106-3116(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010022.htm
      [18] Kapp, P., Murphy, M.A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4): 1029-1053. doi: 10.1029/2001TC001332
      [19] Kay, S.M., Ramos, V.A., Marquez, M., 1993. Evidence in Cerro-Pampa Volcanic Rocks for Lab-Melting Prior to Ridge-Trench Collision in Southern South America. The Journal of Geology, 101(6): 703-714. doi: 10.1086/648269
      [20] Kuster, D., Harms, U., 1998. Post-Collisional Potassic Granitoids from the Southern and Northwestern Parts of the Late Neo-proterozoic East African Orogen: A Review. Lithos, 45: 177-195. doi: 10.1016/S0024-4937(98)00031-0
      [21] Li, D.W., 2003. A New Model for Uplifting Mechanism of Qinghai-Tibet Plateau. Earth Science—Journal of China University of Geosciences, 28(6): 593-600(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200306002.htm
      [22] Li, D.W., 2004. Late Cenozoic Intraplate Orogeny and Dynamic Metallogeny in the Southern Qinghai-Tibet Plateau. Earth Science Frontiers, 11(4): 361-369(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404004.htm
      [23] Li, D.W., 2008. Three-Stage Tectonic Evolution and Metallogenic Evolution in the Qinghai-Tibet Plateau and Its Adjacent Area. Earth Science—Journal of China University of Geosciences, 33(6): 723-742 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.089
      [24] Li, J.X., Li, G.M., Qin, K.Z., et al., 2008. Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Tibet: Constraints on Metallogenic Tectonic Settings. Acta Petrologica Sinica, 24(3): 531-543(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98200803013
      [25] Liu, J.F., Chi, X.G., Zhao, Z., et al., 2013. Ziron U-Pb Age and Petrogenetic Discussion on Jianshetun Adakite in Balinyouqi, Inner Mongolia. Acta Petrologica Sinica, 29(3): 827-839(in Chinese with English abstract). http://www.researchgate.net/publication/287541704_Ziron_U-Pb_age_and_petrogenetic_discussion_on_Jianshetun_Adakite_in_Balinyouqi_Inner_Mongolia
      [26] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology J. Petrol. , 51: 537-571. doi: 10.1093/petrology/egp082
      [27] Liu, Y., Hu, Z., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol. , 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
      [28] Ludwig, K.R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, Berkeley, 4: 1-71. http://www.researchgate.net/publication/303107803_User's_manual_for_Isoplot_36_A_geochronological_toolkit_for_microsoft_excel_Berkeley_Geochronology_Center
      [29] Macpherson, C.G., Dreher, S., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma Mindanao, the Philippines. Earth and Planetary Science Letters, 243: 581-593. doi: 10.1016/j.epsl.2005.12.034
      [30] Martin, H., Smithies, R.H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79: 1-24. doi: 10.1016/j.lithos.2004.04.048
      [31] Moyen, J.F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112: 556-574. doi: 10.1016/j.lithos.2009.04.001
      [32] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract). http://www.oalib.com/paper/1472080
      [33] Pan, G.T., Zhu, D.C., Wang, L.Q., et al., 2004. Bangong Lake-Nu River Suture Zone—The Northern Boundary of Gondwanaland: Evidence from Geology and Geophysics. Earth Science Frontiers, 11(4): 370-382(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404005.htm
      [34] Pearce, J.A., 1996. Sources and Setting Granitic Rocks. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005
      [35] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 68-81. doi: 10.1007/BF00384745
      [36] Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37: 1491-1521. doi: 10.1093/petrology/37.6.1491
      [37] Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Silicate Melts Derived from Subducted Oceanic Crust. Nature, 410: 197-200. doi: 10.1038/35065583
      [38] Qiu, R.Z., Zhou, S., Deng, J.F., et al., 2004. Dating of Gabbro in the Shemalagou Ophiolite in the Western Segment of the Bangong Co-Nujiang Ophiolite Belt, Tibet—With a Discussion of the Age of the Bangong Co-Nujiang Ophiolite Belt. Geology in China, 31(3): 262-268(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200403003.htm
      [39] Qu, X.M., Xin, H.B., Du, D.D., et al., 2012. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau. Geochimica, 41(1): 1-14(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx201201002.htm
      [40] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8~32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
      [41] Shi, R.D., 2005. Recognition of the Bangong Lake MOR- and SSZ-Type Ophiolites in the Northwestern Tibet Plateau and Its Tectonic Significance(Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      [42] Smithies, R.H., 2000. The Archean TTG Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182: 115-125. doi: 10.1016/S0012-821X(00)00236-3
      [43] Stern, C.R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123: 263-281. doi: 10.1007/s004100050155
      [44] Streckeisen, A.L., 1976. Classification of the Common Igneous Rocks by Means of Their Chemical Composition: A Provisional Attempt. Neues Jahrbuch Fur Mineralogie, Monatshefte, 1: 1-15. http://www.researchgate.net/publication/309050540_Classification_of_common_igneous_rocks_by_means_of_their_chemical_composition_A_provisional_attempt
      [45] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts Implications for Mantle Composition and Processes. Iin: Saunders, A.D., Nrry, M.J. eds., Magmatism in Oceanic Basins. Spec. Pub. L. Geo. L. Soc., London, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [46] Tseng, C.Y., Yang, H.J., Yang, H.Y., et al., 2009. Continuity of the North Qilian and North Qinling Orogenic Belts, Central Orogenic System of China: Evidence from Newly Discovered Paleozoic Adakitic Rocks. Gondwana Res. , 16: 285-293. doi: 10.1016/j.gr.2009.04.003
      [47] Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47: 119-144. doi: 10.1093/petrology/egi070
      [48] Wei, H.Y., Sun, D.Y., Ye, S.Q., et al., 2012. Zircon U-Pb Ages and Its Geological Significance of the Granitic Rocks in the Yichun-Hegang Region, Southeastern Xiao Hinggan Mountains. Earth Science—Journal of China University of Geosciences, 37(Suppl. ): 50-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S1008.htm
      [49] Xiao, X.C., Li, T.D., 1998. The Effects of the Qinghai-Tibet Plateau Lithosphere Structure, Uplift Mechanisms to Continental Deformation. Geological Review, 44(1): 112(in Chinese).
      [50] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rock in the Ningzhen Area of East China Partial Melting of Delaminated Lower Continental Crust. Geology, 30: 1111-1114. doi:10.1130/0091-7613(2002) 030
      [51] Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2006. Mesozoic Adakitic Rocks from the Xuzhou-Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27: 230-240. doi: 10.1016/j.jseaes.2005.03.010
      [52] Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Ann. Rev. Earth Planet. Sci. , 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
      [53] Yu, H.X., Chen, J.L., Xu, J.F., et al., 2011. Geochemistry and Origin of Late Cretaceous (~90 Ma) Ore-Bearing Porphyry of Balazha in Mid-Northern Lhasa Terrane, Tibet. Acta Petrologica Sinica, 27(7): 2011-2022(in Chinese with English abstract). http://www.oalib.com/paper/1474598
      [54] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
      [55] Zhang, F.Q., Chen, H.L., Cao, R.C., et al., 2010. Discovery of Late Paleozoic Adakite from the Basement of the Hailaer Basin in NE China and Its Geological Implication. Acta Petrologica Sinica, 26(2): 633-641(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201002025.htm
      [56] Zhang, Q., Qian, Q., Wang, E.Q., et al., 2001a. An East China Plateau in Mid-Late Yanshanian Period: Implication from Adakites. Chinese Journal of Geology, 36(2): 248-255(in Chinese with English abstract). http://www.researchgate.net/publication/303564342_An_East_China_plateau_in_Mid-Late_Yanshanian_Period_Implicationfrom_adakites
      [57] Zhang, Q., Wang, Y., Qian, Q., et al., 2001b. The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China. Acta Petrologica Sinica, 17(2): 236-244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200102007.htm
      [58] Zhang, Q., Wang, Y., Wang, Y.L., 2003. On the Relationship between Adakite and Its Tectonic Setting. Geotectonica et Metallogenia, 27(2): 101-108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200302000.htm
      [59] Zhang, X.F., 2011. Characteristics and Origin of the Acid Intrusive Rocks in the Bangong Ophiolitic Melange Zone in Ritu(Dissertation). Chengdu Technology University, Chengdu(in Chinese with English abstract).
      [60] Zhao, T.P., Zhou, M.F., Zhao, J.H., et al., 2008. Geochronology and Geochemistry of the 80 Ma Rutog Granitic Pluton, Northwestern Tibet: Implications for the Tectonic Evolution of the Lhasa Terrane. Geology, 145(6): 845-857. doi: 10.1017/S0016756808005025
      [61] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005
      [62] Zhu, M.T., Wu, G., Xie, H.J., et al., 2011. Geochronology and Geochemistry of the Kekesai Intrusion in Western Tianshan, NW China and Its Geological Implications. Acta Petrologica Sinica, 27(10): 3041-3054(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201110021.htm
      [63] 蔡志勇, 邱瑞照, 熊小林, 等, 2005. 西藏西部地区埃达克质侵入岩及铜金找矿意义. 大地构造与成矿, 29(4): 491-501. doi: 10.3969/j.issn.1001-1552.2005.04.009
      [64] 江军华, 王瑞江, 曲晓明, 等, 2011. 青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用. 地球科学——中国地质大学学报, 36(6): 1021-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106008.htm
      [65] 康磊, 校培喜, 高晓峰, 等, 2012. 青藏高原西北缘红其拉甫岩体的岩石成因、时代及其构造意义. 地质学报, 86(7): 1063-1076. doi: 10.3969/j.issn.0001-5717.2012.07.003
      [66] 康志强, 许继峰, 董彦辉, 等, 2008. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物. 岩石学报, 24(2): 303-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802012.htm
      [67] 康志强, 许继峰, 王保弟, 等, 2010. 拉萨地块北部去申拉组火山岩: 班公湖-怒江特提斯洋南向俯冲的产物. 岩石学报, 26(10): 3106-3116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010022.htm
      [68] 李德威, 2003. 青藏高原隆升机制新模式. 地球科学——中国地质大学学报, 28(6): 593-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306002.htm
      [69] 李德威, 2004. 青藏高原南部晚新生代板内造山与动力成矿. 地学前缘, 11(4): 361-369. doi: 10.3321/j.issn:1005-2321.2004.04.003
      [70] 李德威, 2008. 青藏高原及邻区三阶段构造演化与成矿演化. 地球科学——中国地质大学学报, 33(6): 723-742. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806000.htm
      [71] 李金祥, 李光明, 秦克章, 等, 2008. 班公湖带多不杂富金斑岩铜矿床斑岩—火山岩的地球化学特征与时代: 对成矿构造背景的制约. 岩石学报, 24(3): 531-543. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm
      [72] 刘建峰, 迟效国, 赵芝, 等, 2013. 内蒙古巴林右旗建设屯埃达克岩锆石U-Pb年龄及成因讨论. 岩石学报, 29(3): 827-839. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303008.htm
      [73] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      [74] 潘桂棠, 朱弟成, 王立全, 等, 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 370-382. doi: 10.3321/j.issn:1005-2321.2004.04.048
      [75] 邱瑞照, 周肃, 邓晋福, 等, 2004. 西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定: 兼论班公湖-怒江蛇绿岩带形成时代. 中国地质, 31(3): 262-268. doi: 10.3969/j.issn.1000-3657.2004.03.004
      [76] 曲晓明, 辛洪波, 杜德道, 等, 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm
      [77] 史仁灯, 2005. 西藏班公湖MOR型和SSZ型两套蛇绿岩的厘定及大地构造意义(博士学位论文). 北京: 中国地质科学院.
      [78] 魏红艳, 孙德有, 叶松青, 等, 2012. 小兴安岭东南部伊春-鹤岗地区花岗质岩石锆石U-Pb年龄测定及其地质意义. 地球科学——中国地质大学学报, 37(增刊): 50-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S1008.htm
      [79] 肖序常, 李廷栋, 1998. 青藏高原岩石圈结构、隆升机制及对大陆变形影响. 地质论评, 44(1): 112. doi: 10.3321/j.issn:0371-5736.1998.01.019
      [80] 余红霞, 陈建林, 许继峰, 等, 2011. 拉萨地块中北部晚白垩世(约90 Ma)拔拉扎含矿斑岩地球化学特征及其成因. 岩石学报, 27(7): 2011-2022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107011.htm
      [81] 章凤奇, 陈汉林, 曹瑞成, 等, 2010. 海拉尔盆地基底晚古生代adakite的发现及其地质意义. 岩石学报, 26(2): 633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002025.htm
      [82] 张旗, 钱青, 王二七, 等, 2001a. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 36(2): 248-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200102015.htm
      [83] 张旗, 王焰, 钱青, 等, 2001b. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm
      [84] 张旗, 王焰, 王元龙, 2003. 埃达克岩与构造环境. 大地构造与成矿学, 27 (2): 101-108. doi: 10.3969/j.issn.1001-1552.2003.02.001
      [85] 张向飞, 2011. 班公湖蛇绿混杂岩带酸性侵入岩特征及成因(硕士学位论文). 成都: 成都理工大学.
      [86] 朱明田, 武广, 解洪晶, 等, 2011. 新疆西天山科克赛岩体年代学、地球化学及地质意义. 岩石学报, 27(10): 3041-3054. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110021.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  4766
    • HTML全文浏览量:  264
    • PDF下载量:  605
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-08-19
    • 刊出日期:  2014-05-01

    目录

      /

      返回文章
      返回