Calculation Methods of Rock Mass Discontinuity Orientation Measured by Borehole Camera Technology and Technology Reliability
-
摘要: 针对钻孔摄像技术对结构面产状测量只限于垂直孔的现状,以钻孔孔口圆心为原点,建立空间左手直角坐标系,对倾斜孔中结构面产状的确定方法进行了详尽的阐述和推导,得出了精确的解析计算公式,并基于C#语言进行编程,开发了IDOIB软件,通过测试表明此方法及其程序的正确性.采用PVC管模拟钻孔孔壁,进行钻孔摄像技术用于结构面产状测量的可靠性试验研究,结果表明:(1)对于垂直孔,测量结果的倾向绝对误差为[-3°,4°]、倾角绝对误差为[-1.5°,1.0°],说明该技术用于垂直孔进行结构面产状测量是可靠的,能满足工程应用精度.(2)当PVC管的倾伏向为270°、倾伏角为25°时,结构面产状可靠度为0.10;倾伏向为176°、倾伏角为60°时,结构面产状可靠度为0.67.PVC管倾伏角的不同导致结构面产状可靠度的差异.(3)一般岩体工程的结构面产状测量结果应具有高等级可靠度(不小于0.8),即须在倾伏角不小于71°的钻孔内采用该技术进行测量.Abstract: For the issue that borehole camera technology only is applied to the vertical borehole currently, the calculation process for discontinuity orientation in inclined borehole is presented in this paper. With the circle centre of drill orifice as the origin, the left-handed Cartesian coordinate system is constructed and the precise analytic formulas for discontinuity orientation in inclined borehole are obtained. On this basis, the IDOIB software is developed using C# programming language. The validity of analytic formulas and program are verified by the principle of borehole camera technology. In addition, the PVC pipe experiments are conducted to examine the reliability of borehole camera technology for measurement of discontinuity orientation. Results show that: (1) For vertical holes, absolute errors of dip directions range from -3° to 4°, and those of dips range from -1.5° to 1.0°. The technology is reliable for measurement of discontinuity orientation in vertical boreholes, and it can satisfy the needs of rock engineering. (2) For inclined PVC pipes with trend of 270° and plunge of 25°, the reliability degree of discontinuity orientation is 0.10; while inclined PVC pipes with trend of 176° and plunge of 60°, the reliability degree of discontinuity orientation is 0.67. The difference of pipe plunge results in the reliability difference of discontinuity orientation. (3) The reliability of discontinuity orientation should be high (the reliability degree is no less than 0.8) for general rock engineering, so the plunge of inclined borehole should be no less than 71°.
-
Key words:
- borehole camera technology /
- rock /
- discontinuity /
- orientation /
- reliability /
- image interpretation /
- engineering geology
-
表 1 PVC管垂直时的真实产状和影像产状对比
Table 1. Contrast of authentic orientation and image orientation in vertical PVC pipe
编号 倾向(°) 倾角(°) 真实值 影像值 绝对误差 真实值 影像值 绝对误差 1 270 274 4 34.2 34.0 -0.2 2 20 17 -3 36.6 35.1 -1.5 3 135 137 2 55.5 56.0 0.5 4 180 182 2 53.7 54.2 0.5 5 225 228 3 44.2 45.1 0.9 6 78 77 -1 25.6 25.1 -0.5 7 165 166 1 34.4 35.4 1.0 8 314 316 2 45.3 46.0 0.7 9 128 130 2 39.8 40.0 0.2 表 2 倾伏向270°、倾伏角25°时的结构面产状结果对比
Table 2. Contrast of discontinuity orientation while PVC pipe with trend of 270° and plunge of 25°
编号 倾向(°) 倾角(°) 真实值 影像值 绝对误差 真实值 影像值 绝对误差 1 270 284 14 78 74 -4 2 150 141 -9 80 75 -5 3 135 129 -6 38 40 2 4 148 137 -11 75 84 9 5 143 141 -2 69 78 9 6 160 145 -15 73 59 -14 7 108 100 -8 65 62 -3 8 290 303 13 75 69 -6 9 123 127 4 29 25 -4 10 104 99 -5 32 42 10 11 75 87 12 60 57 -3 12 122 136 14 48 53 5 13 280 291 11 87 79 -8 表 3 倾伏向176°、倾伏角60°时的结构面产状结果对比
Table 3. Contrast of discontinuity orientation while PVC pipe with trend of 176° and plunge of 60°
编号 倾向(°) 倾角(°) 真实值 影像值 绝对误差 真实值 影像值 绝对误差 1 327 323 -4 61 58 -3 2 51 45 -6 58 60 2 3 64 62 -2 19 22 3 4 44 49 5 52 54 2 5 42 44 2 47 45 -2 6 52 48 -4 64 63 -1 7 339 344 5 35 33 -2 8 181 180 -1 72 73 1 9 117 120 3 13 17 4 10 221 223 2 8 6 -2 11 294 291 -3 38 37 -1 12 342 340 -2 18 21 3 13 342 337 -5 61 60 -1 -
[1] Cunningham, J.K., 2004. Application of Ground-Penetrating Radar, Digital Optical Borehole Images, and Cores for Characterization of Porosity Hydraulic Conductivity and Paleokarst in Biscayne Aquifer, Southeastern Florida, USA. Journal of Applied Geophysics, 55(1-2): 61-76. doi: 10.1016/j.jappgeo.2003.06.005 [2] Cunningham, J.K., Carlson, J.I., Hurley, N.F., 2004. New Method for Quantification of Vuggy Porosity from Digital Optical Borehole Images as Applied to the Karstic Pleistocene Limestone of the Biscayne Acquifer, Southeastern Florida. Journal of Applied Geophysics, 55(1-2): 77-90. doi: 10.1016/j.jappgeo.2003.06.006 [3] Ge, X.R., Wang, C.Y., 2001. Digital Panoramic Borehole Camera Technique and Digital Borehole. Underground Space, 21(4): 254-261 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxkj200104002 [4] Hamm, S.Y., Kim, M.S., Cheong, J.Y., et al., 2007. Relationship between Hydraulic Conductivity and Fracture Properties Estimated from Packer Tests and Borehole Data in a Fractured Granite. Engineering Geology, 92(1-2): 73-87. doi: 10.1016/j.enggeo.2007.03.010 [5] Kanaori, Y., 1983. The Observation of Crack Development around an Underground Rock Chamber by Borehole Television System. Rock Mechanics and Rock Engineering, 16(2): 133-142. doi: 10.1007/BF01032795 [6] Kong, G.S., 2005. The Application of Borehole Acoustic Televiewer Logging Results to the Classification of Rock Weathering Degrees. Geophysical & Geochemical Exploration, 29(4): 367-368, 373 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-WTYH200504022.htm [7] Liang, H.W., Wu, S.H., Mu, L.X., et al., 2013. Base Level Cyclic Controls on the Fluvial Reservoir Physical Properties and Sonic Logging Response. Earth Science—Journal of China University of Geosciences, 38(5): 1135-1142 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.113 [8] Lo, H.C., Chou, P.Y., Hsu, S.M., et al., 2012. Using Borehole Prospecting Technologies to Determine the Correlation between Fracture Properties and Hydraulic Conductivity: A Case Study in Taiwan. Journal of Environmental and Engineering Geophysics, 17(1): 27-37. doi: 10.2113/JEEG17.1.27 [9] Luo, M., Pan, H.P., Zhao, Y.G., et al., 2008. Natural Radioactivity Logs and Interpretation from the CCSD Main Hole. Earth Science—Journal of China University of Geosciences, 33(5): 661-671 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.081 [10] Ma, F., Chen, G., Hu, C., et al., 2011. Change of Permeability Tensors in Fractured Rock Mass Based on Intelligent Drillhole Optical Imager. Chinese Journal of Geotechnical Engineering, 33(3): 496-500 (in Chinese with English abstract). http://www.cqvip.com/QK/95758X/201103/37014720.html [11] Mao, J.Z., 1994. Ultrasonic Imaging Borehole TV and Its Application to Rock Engineering. Chinese Journal of Rock Mechanics and Engineering, 13(3): 247-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX403.006.htm [12] Mao, J.Z., Chen, Q.C., Wang, C.H., 2008. Application of Acoustic Borehole Televiewer to Measurement of In-Situ Stress. Chinese Journal of Geotechnical Engineering, 30(1): 46-50 (in Chinese with English abstract). http://www.researchgate.net/publication/289046975_Application_of_acoustic_borehole_televiewer_to_measurement_of_in-situ_stress [13] Wang, C.Y., Hu, P.L., Sun, W.C., 2010. Method for Evaluating Rock Mass Integrity Based on Borehole Camera Technology. Rock and Soil Mechanics, 31(4): 1326-1330 (in Chinese with English abstract). http://www.researchgate.net/publication/288617719_Method_for_evaluating_rock_mass_integrity_based_on_borehole_camera_technology [14] Wang, C.Y., Law, K.T., 2005. Review of Borehole Camera Technology. Chinese Journal of Rock Mechanics and Engineering, 24(19): 3440-3448 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200519005.htm [15] Wang, C.Y., Zhong, S., Sun, W.C., 2009. Study of Connectivity of Discontinuities of Borehole Based on Digital Borehole Images. Chinese Journal of Rock Mechanics and Engineering, 28(12): 2405-2410 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/yslxygcxb200912004 [16] Williams, J.H., Johnson, C.D., 2004. Acoustic and Optical Borehole-Wall Imaging for Fractured-Rock Aquifer Studies. Journal of Applied Geophysics, 55(1-2): 151-159. doi: 10.1016/j.jappgeo.2003.06.009 [17] Wu, J., Feng, S.K., Li, H.J., 2011. Study of Automatically Extracting Structural Plane Parameters from Borehole Images. Rock and Soil Mechanics, 32(3): 951-957 (in Chinese with English abstract). http://www.researchgate.net/publication/286361474_Study_of_automatically_extracting_structural_plane_parameters_from_borehole_images [18] Yang, J., Yan, E.C., Ji, H.B., et al., 2011. Digital Drillhole Images Based Identification of Discontinuity Classification and Development in Deep Rocks. Journal of Engineering Geology, 19(3): 332-337 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/gcdzxb201103006 [19] Zhou, K.P., Gao, F., Hu, J.H., et al., 2007. Monitoring and Analysis of Fracture Development in Pre-Splitting Hole of Cave Inducement of Roof. Chinese Journal of Rock Mechanics and Engineering, 26(5): 1034-1040 (in Chinese with English abstract). http://www.oalib.com/paper/1485089 [20] 葛修润, 王川婴, 2001. 数字式全景钻孔摄像技术与数字钻孔. 地下空间, 21(4): 254-261. doi: 10.3969/j.issn.1673-0836.2001.04.002 [21] 孔广胜, 2005. 利用钻孔超声成像的图像特征进行岩石风化程度分类. 物探与化探, 29(4): 367-368, 373. doi: 10.3969/j.issn.1000-8918.2005.04.023 [22] 梁宏伟, 吴胜和, 穆龙新, 等, 2013. 基准面旋回对河流相储层物性差异及声波测井影响. 地球科学——中国地质大学学报, 38(5): 1135-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305027.htm [23] 骆淼, 潘和平, 赵永刚, 等, 2008. 中国大陆科学钻探主孔自然放射性测井及其解释. 地球科学——中国地质大学学报, 33(5): 661-671. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805012.htm [24] 马峰, 陈刚, 胡成, 等, 2011. 利用钻孔成像研究基岩地区的渗透张量变化规律. 岩土工程学报, 33(3): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103033.htm [25] 毛吉震, 1994. 超声波成象钻孔电视及其在岩石工程中的应用. 岩石力学与工程学报, 13(3): 247-260. doi: 10.3321/j.issn:1000-6915.1994.03.006 [26] 毛吉震, 陈群策, 王成虎, 2008. 超声波钻孔电视在地应力测量研究中的应用. 岩土工程学报, 30(1): 46-50. doi: 10.3321/j.issn:1000-4548.2008.01.006 [27] 王川婴, 胡培良, 孙卫春, 2010. 基于钻孔摄像技术的岩体完整性评价方法. 岩土力学, 31(4): 1326-1330. doi: 10.3969/j.issn.1000-7598.2010.04.055 [28] 王川婴, Law, K.T., 2005. 钻孔摄像技术的发展与现状. 岩石力学与工程学报, 24(19): 3440-3448. doi: 10.3321/j.issn:1000-6915.2005.19.006 [29] 王川婴, 钟声, 孙卫春, 2009. 基于数字钻孔图像的结构面连通性研究. 岩石力学与工程学报, 28(12): 2405-2410. doi: 10.3321/j.issn:1000-6915.2009.12.004 [30] 吴剑, 冯少孔, 李宏阶, 2011. 钻孔成像中结构面自动判读技术研究. 岩土力学, 32(3): 951-957. doi: 10.3969/j.issn.1000-7598.2011.03.051 [31] 杨举, 晏鄂川, 季惠彬, 等, 2011. 基于数字钻孔影像的深部结构面类型识别及发育特征研究. 工程地质学报, 19(3): 332-337. doi: 10.3969/j.issn.1004-9665.2011.03.006 [32] 周科平, 高峰, 胡建华, 等, 2007. 顶板诱导崩落预裂钻孔裂隙发育监测与分析. 岩石力学与工程学报, 26(5): 1034-1040. doi: 10.3321/j.issn:1000-6915.2007.05.024