Effect of Chlorite on CO2-Water-Rock Interaction
-
摘要: 为了解关键性矿物在“超临界CO2-水-岩石”系统中的地球化学作用,利用先进的数值模拟软件TOUGHREACT,结合我国鄂尔多斯盆地深部咸水含水层的基础地质条件,建立一维垂向模型,研究了盖层中绿泥石含量分别为3%、9%、15%时对CO2-水-岩石相互作用的影响.发现CO2进入盖层后,盖层的矿物成分和渗透率发生了较大变化.当绿泥石体积分数为3%时,盖层渗透率在5 000 a期间一直处于增大状态,不适合CO2封存;当绿泥石体积分数为9%和15%时,盖层渗透率呈现先增大后减小的趋势,产生自封闭现象,有利于CO2封存.结果表明,绿泥石的溶解为盖层中钙蒙脱石、铁白云石、片钠铝石、菱镁矿的沉淀提供了必要的Mg2+、Fe2+、AlO2-等离子.绿泥石含量越多,CO2矿化捕集量越大,盖层的自封闭效应越明显,其渗透率最大减少10%.本研究结果可为CO2地质封存的长期性和稳定性评价提供理论依据.Abstract: In order to understand the geochemical processes of key minerals in the supercritical CO2 -water-rock system, we establish a one-dimensional vertical model to study the effect of chlorite contents in cap rock of 3%, 9% and 15% on CO2 -water-rock interaction by numerical simulation software of TOUGHREACT based on the basic geological conditions of deep saline aquifer in Ordos basin, China. It is found that the mineral composition and permeability of the caprock change greatly after CO2 broke into the caprock. It is not favorable for CO2 storage when chlorite volume fraction is 3% because of the increasing permeability in 5 000 years. The permeability of caprock increases first and then decreases when chlorite volume fraction is 9% and 15%, resulting in self-sealing which facilitates the sequestration of CO2. The results show that the dissolution of chlorite provides Mg2+, Fe2+ and AlO2- for precipitation of calcium montmorillonite, ankerite, dawsonite, and magnesite. The higher the chlorite content, the greater the amount of CO2 mineralization capture, and the more obvious the effect of caprock self-sealing with the maximum caprock permeability decrease of 10%. This study provides a theoretical basis for long-term geological storage of CO2 and its stability evaluation.
-
Key words:
- chlorite /
- caprock /
- CO2-water-rock interaction /
- self-sealing /
- permeability /
- numerical simulation /
- environmental geology
-
图 1 鄂尔多斯盆地构造区划图(据长庆油田石油地质志编写组(1992)修改)
Fig. 1. Tectonic map of the Ordos basin
表 1 延长组泥岩矿物组成(据赵杏媛(1995)修改)
Table 1. Clay minerals composition of mudstone in Yanchang Formation
深度(m) 粘土矿物含量平均值(%) w(%) I S/I K C ≥1 000 48 41 6 5 68 注:I.伊利石;S/I.蒙脱石/伊利石混层;K.高岭石;C.绿泥石;w.伊蒙混层中蒙脱石所占比例. 表 2 模型中的水文地质学及热力学参数设置
Table 2. Hydrogeological and thermal-dynamical parameters used in the simulations
参数 砂岩含水层 泥岩盖层 渗透率(m2) 2.0×10-15 2.0×10-17 孔隙度 0.15 0.10 压缩系数(Pa-1) 4.5×10-10 扩散系数(m2/s) 1.0×10-9 岩石颗粒密度(kg·m-3) 2 600 岩层热传导率(W·m-1·℃-1) 2.51 岩石颗粒特殊焓(J·kg-1·℃-1) 920 温度(℃) 37.5 压强(105 Pa) 101 盐度(%) 4.5 液相的相对渗透率krl $\sqrt {{S^*}} {\left\{ {1 - {{\left({1 - {{\left[ {{S^*}} \right]}^{1/\mathit{m}}}} \right)}^m}} \right\}^2}$ 残余液体饱和度Slr (%) 20 20 气相的相对渗透率krg ${\left({1 - \hat S} \right)^2}\left({1 - {{\hat S}^2}} \right)$ 残余气体饱和度Sgr (%) 5 5 毛细压强Pcap (Pa) Pcap=-P0([S*]-1/m-1)1-m 指数m 0.40 0.40 压强系数P0 (Pa) 3.33×103 1.00×104 注:表中krl(液相的相对渗透率);krg(气相的相对渗透率)和Pcap(毛细压强);3栏中的Sl指液体饱和度;表中注入压强为恒压注入时的压强;krl、krg、Slr、Sgr均为无量纲物理量;本文选用Van Genuchten-Mualem模型来计算相对渗透率,$\hat S$、S、m为Van Genuchten方程中的参数,S*=(Sl-Slr)/(1-Slr);$\hat S$=(Sl-Slr)/(Sl-Slr-Sgr).据长庆油田石油地质志编写组(1992),赵杏媛等(1995)以及任战利和赵重远(1997)修改. 表 3 储盖层中原生矿物及次生矿物体积分数(据赵杏媛等(1995)修改)
Table 3. Volume fraction of initial mineral and possible secondary mineral phases in reservoir and caprock
矿物名称 化学组成 储层体积分数 盖层体积分数 黏土矿物 伊利石 K0.6Mg0.25Al1.8(Al0.5Si3.5O10)(OH)2 0.044 0.347 高岭石 Al2Si2O5(OH) 0.041 0.147 钙蒙脱石 Ca0.145Mg0.26Al1.77Si3.97O10(OH)2 0.019 0.036 绿泥石 Mg2.5Fe2.5Al2Si3O10(OH)8 0.196 0.030 非黏土矿物 石英 SiO2 0.330 0.100 钾长石 KAlSi3O8 0.200 0.070 钠长石 NaAlSi3O8 0.000 0.080 石膏 CaSO4 0.000 0.000 方解石 CaCO3 0.100 0.020 黄铁矿 FeS2 0.000 0.010 奥长石 CaNa4Al6Si14O40 0.050 0.000 赤铁矿 Fe2O3 0.005 0.000 菱铁矿 FeCO3 0.000 0.000 铁白云石 CaMg0.3Fe0.7(CO3)2 0.000 0.000 片钠铝石 NaAlCO3(OH)2 0.000 0.000 菱镁矿 MgCO3 0.000 0.000 白云石 CaMg(CO3)2 0.000 0.000 岩盐 NaCl 0.000 0.000 表 4 储盖层中水化学组分的初始浓度
Table 4. Initial concentration of chemical components in water in reservoir and caprock
溶液成分 盖层c(mol·kg-1) 储层c(mol·kg-1) Ca 2.19×10-3 2.98×10-3 Mg 2.76×10-5 1.14×10-5 Na 1.68×10-1 1.72×10-1 K 3.83×10-4 1.98×10-4 Fe 2.42×10-5 8.92×10-5 Si 1.36×10-3 1.80×10-3 C 9.22×10-3 8.15×10-3 SO42- 9.62×10-17 1.00×10-16 Al 3.96×10-10 4.24×10-10 Cl 1.65×10-1 1.71×10-1 注:Fe是Fe2+、Fe3+及其络合物浓度之和;C是溶解于水中的总碳浓度;资料来源于 Zhang et al., 2009 .表 5 不同时间段下绿泥石含量对渗透率及自封闭性的影响
Table 5. Effect of chlorite content on permeability and self-sealing under different time periods
绿泥石含量 时间段(a) 0 20 50 100 500 1 000 2 000 3 000 4 000 5 000 3% 2.0×10-17 基本无变化 ↑
○↑
○↑2.03×10-17
○↑
○↑
○↑
○↑
○↑2.035×10-17
○9% 2.0×10-17 基本无变化 ↑
○↑2.01×10-17
○↑2.02×10-17
○↓2.005×10-17
○↓1.99×10-17
●↓
●↓
●↓1.95×10-17
●15% 2.0×10-17 基本无变化 ↑2.01×10-17
○↑
○↓2.0×10-17 ↓1.96×10-17
●↓
●↓
●↓
●↓1.8×10-17
●注:↑表示渗透率增大;↓表示渗透率减小;↑2.03×10-17表示渗透率增大后的值是2.03×10-17;↓1.8×10-17表示渗透率减小后的值是1.8×10-17.●表示自封闭性增强;○表示自封闭性减弱. -
[1] Alfredo, T.B., Pedro, P.M., Xavier, L.B., et al., 2012. A Methodology for Territorial Distribution of CO2 Emission Reductions in Transport Sector. International Journal of Energy Research, 36(14): 1298-1313. doi: 10.1002/er.1871 [2] Bachaud, P., Berne, P., Renard, F., et al., 2011. Use of Tracers to Characterize the Effects of a CO2-Saturated Brine on the Petrophysical Properties of a Low Permeability Carbonate Caprock. Chemical Engineering Research and Design, 89(9): 1817-1826. doi: 10.1016/j.cherd.2010.11.004 [3] Bachu, S., Adams, J.J., 2003. Sequestration of CO2 in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO2 in Solution. Energy Conversion and Management, 44(20): 3151-3175. doi: 10.1016/S0196-8904(03)00101-8 [4] Bildstein, O., Jullien, M., Credoz, A., et al., 2009. Integrated Modeling and Experimental Approach for Caprock Integrity, Risk Analysis, and Long Term Safety Assessment. Energy Procedia, 1(1): 3237-3244. doi: 10.1016/j.egypro.2009.02.108 [5] Bildstein, O., Kerwevan, C., Lagneau, V., et al., 2010. Integrative Modeling of Caprock Integrity in the Context of CO2 Storage: Evolution of Transport and Geochemical Properties and Impact on Performance and Safety Assessment. Oil & Gas Science and Technology, 65(3): 485-502. doi: 10.2516/ogst/2010006 [6] Chasset, C., Jarsjo, J., Erlstrom, M., et al., 2011. Scenario Simulations of CO2 Injection Feasibility, Plume Migration and Storage in a Saline Aquifer, Scania, Sweden. International Journal of Greenhouse Gas Control, 5(5): 1303-1318. doi: 10.1016/j.ijggc.2011.06.003 [7] Credoz, A., Bildstein, O., Jullien, M., et al., 2009. Experimental and Modeling Study of Geochemical Reactivity between Clayey Caprocks and CO2 in Geological Storage Conditions. Energy Procedia, 1(1): 3445-3452. doi: 10.1016/j.egypro.2009.02.135 [8] Dalgaard, T., Olesen, J.E., Petersen, S.O., et al., 2011. Developments in Greenhouse Gas Emissions and Net Energy Use in Danish Agriculture—How to Achieve Substantial CO2 Reductions. Environmental Pollution, 159(11): 3193-3203. doi: 10.1016/j.envpol.2011.02.024 [9] Dong, J.X., Li, Y.L., Yang, G.D., et al., 2012. Numerical Simulation of CO2-Water-Rock Interaction Impact on Caprock Permeability. Geological Science and Technology Information, 31(1): 115-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201201021.htm [10] Fleury, M., Pironon, J., Le Nindre, Y.M., et al., 2011. Evaluating Sealing Efficiency of Caprocks for CO2 Storage: An Overview of the Geocarbone-Integrity Program and Results. Oil & Gas Science and Technology, 65(3): 435-444. doi: 10.2516/ogst/2010007 [11] Gherardi, F., Xu, T., Pruess, K., 2007. Numerical Modeling of Self-Limiting and Self-Enhancing Caprock Alteration Induced by CO2 Storage in a Depleted Gas Reservoir. Chemical Geology, 244(1-2): 103-129. doi: 10.1016/j.chemgeo.2007.06.009 [12] Hepple, R.P., Benson, S.M., 2005. Geological Storage of Carbon Dioxide as a Climate Change Mitigation Strategy: Performance Requirements and the Implications of Surface Seepage. Environmental Geology, 47(4): 576-585. doi: 10.1007/s00254-004-1181-2 [13] Huang, H.P., Deng, H.W., 1995. Sealing Ability and Its Influencing Factors of Mudstone Caprock. Natural Gas Geoscience, 6(27): 20-26 (in Chinese). [14] Jiang, H.Y., Shen, P.P., Wang, N.J., et al., 2007. Policies for CO2 Emission Reduction and Prospects for CO2 Geological Storage Underground. Sino-global Energy, 12(5): 7-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZW200705001.htm [15] Li, X.C., Fang, Z.M., Wei, N., et al., 2009. Discussion on Technical Roadmap of CO2 Capture and Storage in China. Rock and Soil Mechanics, 30(9): 2674-2678, 2696 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX200909026.htm [16] Li, Y.L., Fang, Q., Ke, Y.B., et al., 2012. Effect of High Salinity on CO2 Geological Storage: A Case Study of Qianjiang Depression in Jianghan Basin. Earth Science—Journal of China University of Geosciences, 37(2): 283-288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201203018.htm [17] Liu, Y., Wang, Y., 2011. State-of-the-Art Researches on CO2 Geologic Storage in Deep Saline Aquifer. Advances in Science and Technology of Water Resources, 31(6): 74-79 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/slsdkjjz201106019 [18] McGeough, E.J., Little, S.M., Janzen, H.H., et al., 2012. Life-Cycle Assessment of Greenhouse Gas Emissions from Dairy Production in Eastern Canada: A Case Study. Journal of Dairy Science, 95(9): 5164-5175. doi: 10.3168/jds.2011-5229 [19] Michael, K., Arnot, M., Cook, P., et al., 2009. CO2 Storage in Saline Aquifers I—Current State of Scientific Knowledge. Energy Procedia, 1(1): 3197-3204. doi: 10.1016/j.egypro.2009.02.103 [20] Michael, K., Golab, A., Shulakova, V., et al., 2010. Geological Storage of CO2 in Saline Aquifers—A Review of the Experience from Existing Storage Operations. International Journal of Greenhouse Gas Control, 4(4): 659-667. doi: 10.1016/j.ijggc.2009.12.011 [21] Mitrovi, M., Malone, A., 2011. Carbon Capture and Storage (CCS) Demonstration Projects in Canada. Energy Procedia, 4: 5685-5691. doi: 10.1016/j.egypro.2011.02.562 [22] Ouellet, A., Bérard, T., Desroches, J., et al., 2011. Reservoir Geomechanics for Assessing Containment in CO2 Storage: A Case Study at Ketzin, Germany. Energy Procedia, 4: 3298-3305. doi: 10.1016/j.egypro.2011.02.250 [23] Petroleum Geology Group of Changqing Oilfield, 1992. Petroleum Geology of China (Vol. 12): Changqing Oilfield. Petroleum Industry Press, Beijing, 490 (in Chinese). [24] Ren, Z.L., Zhao, C.Y., 1997. Late Mesozoic Comparative Research on the Geothermal Field of the Ordos Basin and Qinshui Basin. Acta Sedimentologica Sinica, 15(2): 134-137(in Chinese with English abstract). http://www.researchgate.net/publication/313171156_Late_Mesozoic_comparative_research_on_the_geothermal_field_of_the_Ordos_Basin_and_Qinshui_Basin [25] Smith, M.M., Wolery, T.J., Carroll, S.A., 2013. Kinetics of Chlorite Dissolution at Elevated Temperatures and CO2 Conditions. Chemical Geology, 347(6): 1-8. doi: 10.1016/j.chemgeo.2013.02.017 [26] Sun, S., Peng, S.P., Shen, P.P., et al., 2011. The Key Scientific and Technological Issues of CO2 Sequestration in Saline Aquifer on Large-Scale. Xiangshan Science Conference—The 415th Symposium, Beijing (in Chinese). [27] Wollenweber, J., Alles, S., Busch, A., et al., 2010. Experimental Investigation of the CO2 Sealing Efficiency of Caprocks. International Journal of Greenhouse Gas Control, 4(2): 231-241. doi: 10.1016/j.ijggc.2010.01.003 [28] Xu, T., Sonnenthal, E., Spycher, N., et al., 2004. TOUGHREACT User's Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geological Media. Lawrence Berkeley Laboratory Report(LBNL)—55460, Berkeley, California, 195. [29] Yin, L.H., Hou, G.C., Zhang, M.S., et al., 2008. Geothermal System in Ordos Basin. Geotechnical Investigation & Surveying, (2): 34-38(in Chinese with English abstract). [30] Zeng, R.S., Sun, S., Chen, D.Z., et al., 2004. Decrease Carbon Dioxide Emission into the Atmosphere—Underground Disposal of Carbon Dioxide. Bulletin of National Science Foundation of China, 196-200(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKJJ200404002.htm [31] Zhang, W., Li, Y., Xu, T., et al., 2009. Long-Term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: Case Study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 3(2): 161-180. doi: 10.1016/j.ijggc.2008.07.007 [32] Zhao, X.Y., Wang, X.X., Zhang, Y.Y., et al., 1995. Clay Minerals in China Oil-Bearing Basins. China University of Geosciences Press, Wuhan, 305 (in Chinese). [33] 长庆油田石油地质志编写组, 1992. 中国石油地质志(卷十二)长庆油田. 北京: 石油工业出版社, 490. [34] 董建兴, 李义连, 杨国栋, 等, 2012. CO2-水-岩相互作用对盖层渗透率影响的数值模拟. 地质科技情报, 31(1): 115-121. doi: 10.3969/j.issn.1000-7849.2012.01.019 [35] 黄海平, 邓宏文, 1995. 泥岩盖层的封闭性能及其影响因素. 天然气地球科学, 6(27): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199502003.htm [36] 江怀友, 沈平平, 王乃举, 等, 2007. 世界二氧化碳减排政策与储层地质埋存展望. 中外能源, 12(5): 7-13. doi: 10.3969/j.issn.1673-579X.2007.05.002 [37] 李小春, 方志明, 魏宁, 等, 2009. 我国CO2捕集与封存的技术路线探讨. 岩土力学, 30(9): 2674-2678, 2696. doi: 10.3969/j.issn.1000-7598.2009.09.022 [38] 李义连, 房琦, 柯怡兵, 等, 2012. 高盐度卤水对CO2地质封存的影响: 以江汉盆地潜江凹陷为例. 地球科学——中国地质大学学报, 37(2): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202013.htm [39] 刘阳, 王媛, 2011. 深部咸水层CO2地质封存研究现状. 水利水电科技进展, 31(6): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201106023.htm [40] 任战利, 赵重远, 1997. 鄂尔多斯盆地与沁水盆地中生代晚期地温场对比研究. 沉积学报, 15(2): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB702.027.htm [41] 孙枢, 彭苏萍, 沈平平, 等, 2011. 规模化二氧化碳咸水层封存的关键科学技术问题. 香山科学会议——第415次学术讨论会, 北京. [42] 尹立河, 侯光才, 张茂省, 等, 2008. 鄂尔多斯盆地地热系统. 工程勘察, (2): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200802013.htm [43] 曾荣树, 孙枢, 陈代钊, 等, 2004. 减少二氧化碳向大气层的排放——二氧化碳地下储存研究. 中国科学基金. 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ200404002.htm [44] 赵杏媛, 王信行, 张有瑜, 等, 1995. 中国含油气盆地粘土矿物. 武汉: 中国地质大学出版社, 305.