Sedimentary Environmental Partitioning of Holocene Strata and Assessment of Carbon Burial Rate of Various Paleo-Environments in the Yellow River Delta
-
摘要: 为了研究黄河三角洲全新世不同古环境中的碳埋藏速率,于2007年在研究区布设了一口30.3 m浅钻,以对其进行了沉积学观测以及含水量、有机碳、总碳和营养成分测试分析.通过地层分析,将其全新世地层划分为8种沉积环境.运用历史地理学和沉积地质学综合分析方法对现代黄河三角洲沉积环境中部分层位进行了精确的年代划分,其他层位也进行了年代推测.同时利用确定的年代计算了不同沉积环境碳的埋藏速率.结果表明:总碳和有机碳与各营养元素都呈很好的线性相关;沉积物的沉积速率是有机碳和总碳埋藏速率的主控因素;虽然沉积物Corg浓度相对较低,但由于其高沉积速率,Corg的平均埋藏速率达到1 331 g/(m2·a),远高于世界其他高Corg浓度的湿地,因此是很好的碳汇地质体.Abstract: In order to study the carbon burial rate of various paleo-environments of Holocene strata in the Yellow River delta (YRD), one 30.3-meter-sediment core, obtained from YRD in 2007, is analyzed for sedimentary characteristics, water content, organic carbon, total carbon and nutritional components in this paper. By analyzing the strata sequence, the Holocene strata are divided into eight kinds of sedimentary environments. Comprehensive analysis method of historical geography and sedimentary geology is used to determine the precise depositional age of the modern Yellow River delta (MYRD) while pre-MYRD age is deduced. The carbon burial rates of various sedimentary environments are calculated based on the certain depositional age. The results show that the nutrient elements are well related to total carbon and organic carbon, and sediment rate is the main controlling factor of the accretion rate of organic carbon and total carbon. Although the carbon concentration is remarkably lower in the sediments, the average carbon accretion rate reaches 1 331 g/(m2·a) because of high sedimentation rate, which is significantly higher than that of the wetlands with high carbon concentration. It is concluded that the MYRD is likely the major sink of carbon.
-
图 1 钻孔位置及现代黄河三角洲分流河道历史变迁
分流河道时间顺序以阿拉伯数字表示,其后的英文字母表示分流河道活动的先后顺序.1.1855—1889年;2.1889—1897年;3.1897—1904年;4a.1904—1917年;4b.1917—1926年;4c.1926—1929年;5a-5d.1929—1934年;6a.1934—1953年;6b.1934—1960年;6c.1960—1964年;7a.1964—1966年,处于漫流和频繁改道状态,未标明具体位置;7b.1967—1972年;7c.1972—1974年;7d.1974—1976年;8.1976年至今.图中整个三角洲海岸线为1984年高潮线的位置,现行河口海岸线分别为1976年12月、1986年5月、1996年5月、2002年2月和2006年10月5个时期平均低潮线位置,数据是通过这5年的landsat卫星遥感图像解译所得
Fig. 1. Location of the core and modern Yellow River channel variance history
表 1 黄河三角洲沉积物元素特征
Table 1. Element characteristics of the sediments in Yellow River delta
Cu(mg/kg) Mn(mg/kg) TN(mg/kg) P(mg/kg) S(mg/kg) Zn(mg/kg) Al(mg/g) 平均值 17.86 485.16 256.11 564.00 421.65 51.98 59.16 STDEV 7.094 152.808 153.473 60.812 278.550 15.668 5.854 Fe(mg/g) Mg(mg/g) Ca(mg/g) K(mg/g) TC(mg/g) Corg(mg/g) pH 平均值 25.41 13.15 43.60 18.27 13.08 2.68 8.66 STDEV 6.551 2.335 8.482 1.642 4.236 2.013 0.119 注:STDEV.标准偏差. 表 2 沉积物碳、Al及营养元素浓度的相关性分析
Table 2. Correlations between carbons, Al and nutrients of the sediments
Cu Mn TN P S Zn Al Fe Mg Ca K TC Corg Cu 1 0.961(**) 0.883(**) 0.493(**) 0.300(*) 0.971(**) 0.910(**) 0.960(**) 0.931(**) 0.815(**) 0.860(**) 0.899(**) 0.506(**) Mn 1 0.887(**) 0.443(**) 0.280 0.978(**) 0.925(**) 0.977(**) 0.952(**) 0.884(**) 0.873(**) 0.935(**) 0.495(**) TN 1 0.580(**) 0.384(**) 0.914(**) 0.843(**) 0.919(**) 0.899(**) 0.763(**) 0.782(**) 0.903(**) 0.575(**) P 1 0.201 0.555(**) 0.403(**) 0.548(**) 0.471(**) 0.238 0.317(*) 0.447(**) 0.279 S 1 0.376(*) 0.497(**) 0.390(**) 0.499(**) 0.132 0.552(**) 0.349(*) 0.622(**) Zn 1 0.946(**) 0.995(**) 0.970(**) 0.821(**) 0.893(**) 0.926(**) 0.550(**) Al 1 0.946(**) 0.956(**) 0.721(**) 0.972(**) 0.856(**) 0.590(**) Fe 1 0.974(**) 0.837(**) 0.891(**) 0.938(**) 0.558(**) Mg 1 0.834(**) 0.903(**) 0.932(**) 0.639(**) Ca 1 0.640(**) 0.914(**) 0.439(**) K 1 0.791(**) 0.566(**) TC 1 0.576(**) Corg 1 注:**为在0.01水平(双侧)上显著相关;*为在0.05水平(双侧)上显著相关. 表 3 黄河三角洲不同沉积环境垂向沉积速率与C的埋藏速率计算
Table 3. Vertical sediment rate and accretion rate of carbon of different sediment environments in Yellow River delta
沉积
层位沉积厚度
(m)沉积时间
(a)沉积速率
(cm/a)原位密度
(g/cm3)TC含量
(mg/g)Corg含量
(mg/g)TC埋藏速率
g/(m2·a)Corg埋藏速率
g/(m2·a)沉积
环境U8 3.76 22.00 17.09 1.48 10.64 1.75 2 691.34 442.65 三角洲平原 U7 4.26 10.00 42.60 1.59 11.45 2.57 7 755.54 1 740.76 三角洲前缘 U6 1.27 4.00 31.75 1.23 18.10 3.77 7 068.50 1 472.28 三角洲侧缘 U5 6.21 10.00 62.10 1.59 12.71 2.10 12 549.73 2 073.52 三角洲前缘 U4 2.94 17.00 17.29 1.25 21.54 4.28 4 656.44 925.24 前三角洲 U3 3.09 8 787.00 0.03 1.50 13.80 2.39 6.87 1.19 陆架 U2 1.07 200.00 0.54 1.64 16.05 8.89 140.82 78.00 潮坪 -
[1] Azevedo, W.R., Faquin, V., Femandes, L.A., 2001. Boron Adsorption in Lowland Soils from Southern of the State of Minas Gerais, Brazil. Pesquisa Agropecuária Brasileira, 36(7): 957-964. doi: 10.1590/S0100-204X2001000700005 [2] Bornhold, B.D., Yang, Z.S., Keller, G.H., et al., 1986. Sedimentary Framework of Modern Huanghe (Yellow River) Delta. Geo-Marine Letters, 6(2): 77-83. doi: 10.1007/BF02281643 [3] Brevik, E.C., Homburg, J.A., 2004. A 5 000 Year Record of Carbon Sequestration from a Coastal Lagoon and Wetland Complex, Southern California, USA. Catena, 57(3): 221-232. doi: 10.1016/j.catena.2003.12.001 [4] Bridgham, S.D., Megonigal, J.P., Keller, J.K., et al., 2006. The Carbon Balance of North American Wetlands. Wetlands, 26(4): 889-916. doi: 10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2 [5] Cheng, G.D., Xue, C.T., 1997. Sedimentary Geology on the Yellow River Delta. Geological Publishing House, Beijing, 48-55 (in Chinese). [6] Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., et al., 2003. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Global Biogeochemical Cycles, 17(4): 1111-1120. doi: 10.1029/2002GB001917 [7] Craft, C., 2007. Freshwater Input Structures Soil Properties, Vertical Accretion, and Nutrient Accumulation of Georgia and U.S. Tidal Marshes. Limnol. Oceanogr., 52(3): 1220-1230. doi: 10.4319/lo.2007.52.3.1220 [8] Craft, C.B., Richardson, C.J., 1998. Recent and Long-Term Organic Soil Accretion and Nutrient Accumulation in the Everglades. Soil Science Society of American Journal, 62(3): 834-843. doi: 10.2136/sssaj1998.03615995006200030042x [9] Ding, Y.R., Ye, S.Y., Zhao, Q.S., 2012. Nutrients and Carbon Sequestration in the Newly Created Wetlands of Yellow River Delta. Geological Review, 58(1): 183-189 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201201019.htm [10] Duan, X.N., Wang, X.K., Fei, L., et al., 2008. Primary Evaluation of Carbon Sequestration Potential of Wetlands in China. Acta Ecologica Sinica, 28(2): 463-469. doi: 10.1016/S1872-2032(08)60025-6 [11] Fan, D.J., Yang, Z.S., Guo, Z.G., 2000. Review of 210Pb Dating in the Continental Shelf of China. Advance in Earth Sciences, 15(3): 297-302 (in Chinese with English abstract). http://www.researchgate.net/publication/284046627_Review_of_210Pb_dating_in_the_continental_shelf_of_China [12] Guo, Z.G., Yang, Z.S., Qu, Y.H., et al., 1999. Distribution Pattern of Carbon Storage in the Surficial Sediments in the Middle Continental Shelf Mud Area and Its Adjoining East China Sea Areas. Oceanologia et Limnologia Sinica, 30(4): 421-426(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ199904011.htm [13] Hanebuth, T.J.J., Voris, H.K., Yokoyama, Y., et al., 2011. Formation and Fate of Sedimentary Depocentres on Southeast Asia's Sunda Shelf over the Past Sea-Level Cycle and Biogeographic Implications. Earth-Science Reviews, 104(1-3): 92-110. doi: 10.1016/j.earscirev.2010.09.006 [14] Hatton, R.S., Patrick, W.H., DeLaune, R.D., 1982. Sedimentation Nutrient Accumulation and Early Diagenesis in Louisiana Barataria Basin Coastal Marshes. In: Kennedy, V.S., ed., Estuarine Comparisons. Academic Press, New York, 255-267. [15] Li, G.X., Cheng, G.D., Wei, H.L., et al., 1994. Shear Zone of Flow Field in the Modern Yellow River Estuary. Chinese Science Bulletin, 39(10): 928-932 (in Chinese). doi: 10.1360/csb1994-39-10-928 [16] Liu, J., Saito, Y., Wang, H., et al., 2009. Stratigraphic Development during the Late Pleistocene and Holocene Offshore of the Yellow River Delta, Bohai Sea. Journal of Asian Earth Sciences, 36(4-5): 318-331. doi: 10.1016/j.jseaes.2009.06.007 [17] Nair, V.D., Graetz, D.A., Reddy, K.R., et al., 2001. Soil Development in Phosphate-Mined Created Wetlands of Florida, USA. Wetlands, 21(2): 232-239. doi: 10.1672/0277-5212(2001)021[0232:SDIPMC]2.0.CO;2 [18] Pang, J.Z., Si, S.H., 1979. The Estuary Changes of Huanghe River—I. Changes in Modern Time. Oceanologia et Limnologia Sinica, 10(2): 136-141 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ197902005.htm [19] Prahl, F.G., Bennett, J.T., Carpenter, R., 1980. The Early Diagenesis of Aliphatic Hydrocarbons and Organic Matter in Sedimentary Particulates from Dabob Bay, Washington. Geochimica et Cosmochimica Acta, 44(12): 1967-1976. doi: 10.1016/0016-7037(80)90196-9 [20] Prior, D.B., Yang, Z.S., Bornhold, B.D., et al., 1986. The Subaqueous Delta of the Modern Huanghe (Yellow River). Geo-Marine Letters, 6(2): 65-75. doi: 10.1007/BF02281642 [21] Smith, P., 2004. Carbon Sequestration in Croplands: The Potential in Europe and the Global Context. European Journal of Agronomy, 20(3): 229-236. doi: 10.1016/j.eja.2003.08.002 [22] Turner, R.E., Swenson, E.M., Milan, C.S., 2002. Organic and Inorganic Contributions to Vertical Accretion in Salt Marsh Sediments. In: Weinstein, M., Kreeger, D.A., eds., Concepts and Controversies in Tidal Marsh Ecology. Kluwer Acadejmic Publishing, Dordrecht, 583-595. doi: 10.1007/0-306-47534-0_27 [23] Wang, H., Fan, C.F., 2005. The 14C Database(Ⅱ) on the Circum-Bohai Sea-Coast. Quaternary Sciences, 25(2): 141-156 (in Chinese with English abstract). [24] Wang, Z.H., Huang, S.G., 1988. Study Change of the Huanghe River Delta by Means of Sea Charts Mesured in the Recent and the Ancient Years. Coastal Engineering, 7(2): 47-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HAGC198802006.htm [25] Xian, B.Z., Jiang, Z.X., 2005. Environment Evolution and Eustatic Change of Holocene in the Yellow River Delta. Marine Geology & Quaternary Geology, 25(3): 1-7 (in Chinese with English abstract). http://www.researchgate.net/publication/285795983_Environment_evolution_and_eustatic_change_of_Holocene_in_the_Yellow_River_Delta [26] Xu, J.S., Meng, Y., Zhang, X.L., et al., 2006. Palaeogeographic Environmental Evolution in the Huanghe River Estuary since Late Pleistocene. Quaternary Sciences, 26(3): 327-333 (in Chinese with English abstract). [27] Xue, C.T., Li, S.Q., Zhou, Y.Q., 2008. Sedimentary Record of Yellow River Delta Superlobe in 11—1099. Acta Sedimentologica Sinica, 26(5): 804-812 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cjxb200805012 [28] Xue, C.T., Ye, S.Y., Gao, M.S., et al., 2009. Determination of Depositional Age in the Huanghe Delta in China. Acta Oceanologica Sinica, 31(1): 117-124 (in Chinese with English abstract). [29] Ye, S.Y., Laws, E.A., Wu, Q., et al., 2010. Pyritization of Trace Metals in Estuarine Sediments and the Controlling Factors: A Case in Jiaojiang Estuary of Zhejiang Province, China. Environmental Earth Sciences, 61(5): 973-982. doi: 10.1007/s12665-009-0416-7 [30] Ye, S.Y., Laws, E.A., Zhong, S.J., et al., 2011. Sequestration of Metals through Association with Pyrite in Subtidal Sediments of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, China. Marine Pollution Bulletin, 62(5): 934-941. doi: 10.1016/j.marpolbul.2011.02.052 [31] Zhang, S.P., Wang, L., Hu, J.J., et al., 2011. Organic Carbon Accumulation Capability of Two Typical Tidal Wetland Soils in Chongming, Dongtan, China. Journal of Environmental Sciences, 23(1): 87-94. doi: 10.1016/S1001-0742(10)60377-4 [32] Zou, Y.L., Tan, Q.X., Shi, N.H., 1982. River System Change of Historical Period, Huanghe. In: Chinese Science Bulletin, ed., Physical Geography of China. Science Press, Beijing, 33-86 (in Chinese). [33] 成国栋, 薛春汀, 1997. 黄河三角洲沉积地质学. 北京: 地质出版社, 48-55. [34] 丁玉蓉, 叶思源, 赵全升, 2012. 黄河三角洲新生湿地土壤对营养成分和碳的扣留. 地质论评, 58(1): 183-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201201019.htm [35] 范德江, 杨作升, 郭志刚, 2000. 中国陆架210Pb测年应用现状与思考. 地球科学进展, 15(3): 297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200003010.htm [36] 郭志刚, 杨作升, 曲艳惠, 等, 1999. 东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究. 海洋与湖沼, 30(4): 421-426. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199904011.htm [37] 李广雪, 成国栋, 魏合龙, 等, 1994. 现代黄河口区流场切变带. 科学通报, 39(10): 928-932. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199410017.htm [38] 庞家珍, 司书亨, 1979. 黄河河口演变: I. 近代历史变迁. 海洋与湖沼, 10(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB200303000.htm [39] 王宏, 范昌福, 2005. 环渤海海岸带14C数据集(Ⅱ). 第四纪研究, 25(2): 141-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200502002.htm [40] 王志豪, 黄世光, 1988. 利用近年施测海图及古海图研究黄河三角洲变迁. 海岸工程, 7(2): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC198802006.htm [41] 鲜本忠, 姜在兴, 2005. 黄河三角洲地区全新世环境演化及海平面变化. 海洋地质与第四纪地质, 25(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200503000.htm [42] 徐家声, 孟毅, 张效龙, 等, 2006. 晚更新世末期以来黄河口古地理环境的演变. 第四纪研究, 26(3): 327-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200603002.htm [43] 薛春汀, 李绍全, 周永青, 2008. 西汉末-北宋黄河三角洲(公元11—1099年)的沉积记录. 沉积学报, 26(5): 804-812. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805015.htm [44] 薛春汀, 叶思源, 高茂生, 等, 2009. 现代黄河三角洲沉积物沉积年代的确定. 海洋学报, 31(1): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200901015.htm [45] 邹逸麟, 谭其骧, 史念海, 1982. 历史时期的水系变迁, 黄河. 见: 中国科学院《中国自然地理》编辑委员会编, 中国自然地理. 北京: 科学出版社, 33-86.