• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    石笋碳酸盐假性热释光:古环境的新指标

    廖金 胡超涌 李成展 张格格 高金荣 黄俊华

    廖金, 胡超涌, 李成展, 张格格, 高金荣, 黄俊华, 2014. 石笋碳酸盐假性热释光:古环境的新指标. 地球科学, 39(4): 443-450. doi: 10.3799/dqkx.2014.042
    引用本文: 廖金, 胡超涌, 李成展, 张格格, 高金荣, 黄俊华, 2014. 石笋碳酸盐假性热释光:古环境的新指标. 地球科学, 39(4): 443-450. doi: 10.3799/dqkx.2014.042
    Liao Jin, Hu Chaoyong, Li Chengzhan, Zhang Gege, Gao Jinrong, Huang Junhua, 2014. Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy. Earth Science, 39(4): 443-450. doi: 10.3799/dqkx.2014.042
    Citation: Liao Jin, Hu Chaoyong, Li Chengzhan, Zhang Gege, Gao Jinrong, Huang Junhua, 2014. Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy. Earth Science, 39(4): 443-450. doi: 10.3799/dqkx.2014.042

    石笋碳酸盐假性热释光:古环境的新指标

    doi: 10.3799/dqkx.2014.042
    基金项目: 

    国家重点基础研究发展计划“973”项目 2011CB808800

    国家自然科学基金项目 41072262

    国家自然科学基金项目 41030103

    国家自然科学基金项目 41130207

    详细信息
      作者简介:

      廖金(1990-),男,研究生,第四纪与全球变化专业.E-mail:liaojin_earth@163.com

      通讯作者:

      胡超涌,E-mail:chyhu@cug.edu.cn

    • 中图分类号: P532

    Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy

    • 摘要: 海相碳酸盐热释光灵敏地响应冰期-间冰期地球气候变化,是一个新的古海洋代用指标,但是否适用于陆地沉积物,尚缺少研究.通过测定湖北清江穿心洞石笋(CX-1)碳酸盐热释光和氧同位素组成,探讨石笋热释光的发光机制,开发热释光作为陆地古环境的替代指标,发现空气环境中检测的石笋碳酸盐热释光主要是发光有机质氧化产生的化学发光,为假性热释光.石笋中发光有机质来源于土壤中有机物的降解,其含量与太阳辐射调控的土壤温度有关;热释光曲线与其对应的氧同位素曲线变化趋势相似.因而,石笋碳酸盐假性热释光是反映过去环境变化的一个新指标.

       

    • 图  1  穿心洞所在位置示意(a)、洞穴平面图(b)和CX-1石笋沿生长轴纵切面照片(c) (图 1c中刻度线表示沿石笋生长中心的氧同位素和热释光采样轨迹)

      Fig.  1.  Location of Chuanxin cave (a), a plan view of its cave system (b) and a photograph of the complete CX-1 stalagmite (c)

      图  2  在不同测试环境中石笋碳酸盐热释光发光曲线

      Fig.  2.  The thermoluminescence glow curves of stalagmite carbonate under various test environments

      图  3  CX-1石笋的热释光强度(发光总量、发光强度)与δ18O曲线对比

      Fig.  3.  Variation of TL intensity(total luminescence intensity, luminescence intensity) and δ18O from stalagmite CX-1

      图  4  发光总量与发光强度之间相关性

      Fig.  4.  Correlation between the total luminescence intensity and luminescence intensity in stalagmite CX-1

      图  5  CX-1石笋的热释光发光总量与δ18O曲线对比

      a.灰色粗线为10点滑动平均;b.灰色粗线为5点滑动平均;c.热释光发光总量与δ18O相关性图

      Fig.  5.  The comparison of total luminescence intensity to δ18O from CX-1 stalagmite

    • [1] Baker, A., Barnes, W.L., Smart, P.L., 1996. Speleothem Luminescence Intensity and Spectral Characteristics: Signal Calibration and a Record of Palaeovegetation Change. Chemical Geology, 130(1-2): 65-76. doi: 10.1016/0009-2541(96)00003-4
      [2] Baker, A., Caseldine, C.J., Gilmour, M.A., et al., 1999. Stalagmite Luminescence and Peat Humification Records of Palaeomoisture for the Last 2500 Years. Earth and Planetary Science Letters, 165(1): 157-162. doi: 10.1016/S0012-821X(98)00258-1
      [3] Baker, A., Genty, D., Smart, P.L., 1998. High-Resolution Records of Soil Humification and Paleoclimate Change from Variations in Speleothem Luminescence Excitation and Emission Wavelengths. Geology, 26(10): 903-906. doi: 10.1130/0091-7613(1998)026<0903:HRROSH>2.3.CO;2
      [4] Baïetto, V., Villeneuve, G., Guibert, P., et al., 2000. EPR and TL Correlation in Some Powered Greek White Marble. Applied Radiation and Isotopes, 52(2): 229-235. doi: 10.1016/S0969-8043(99)00120-7
      [5] Brook, G.A., Rafter, M.A., Railsback, L.B., et al., 1999. A High-Resolution Proxy Record of Rainfall and ENSO since AD 1550 from Layering in Stalagmites from Cave, Madagascar. The Holocene, 9(6): 695-705. doi: 10.1191/095968399677907790
      [6] Castagnoli, G.C., Bonino, G., Provenzale, A., 1988a. On the Thermoluminescence Profile of an Ionian Sea Sediment: Evidence of 137, 118, 12.1 and 10.8 y Cycles in the Last Two Millennia. Ⅱ Nuovo Cimento C, 11(1): 1-12. doi: 10.1007/BF02507892
      [7] Castagnoli, G.C., Bonino, G., Provenzale, A., 1988b. The Thermoluminescence Profile of a Recent Sea Sediment Core and Solar Variability. Solar Physics, 117(1): 187-197. doi: 10.1007/BF00148582
      [8] Cheng, H., Fleitmann, D., Edwards, R.L., et al., 2009. Timing and Structure of the 8.2 kyr B.P. Event Inferred from δ18O Records of Stalagmite from China, Oman, and Brazil. Geology, 37(11): 1007-1010. doi: 10.1130/G30126A.1
      [9] Christodoulides, C., Fremlin, J.H., 1971. Thermoluminescence of Biological Materials. Nature, 232: 257-258. doi: 10.1038/232257a0
      [10] Cosford, J., Qing, H.R., Eglington, B., et al., 2008. East Asian Monsoon Variability since the Mid-Holocene Recorded in a High-Resolution, Absolute-Dated Aragonite Speleothem from Eastern China. Earth and Planetary Science Letters, 275(3-4): 296-307. doi: 10.1016/j.epsl.2008.08.018
      [11] Debenham, N.C., 1983. Reliability of Thermoluminescence Dating of Stalagmitic Calcite. Nature, 304: 154-156. doi: 10.1038/304154a0
      [12] Debenham, N.C., Aitken, M.J., 1984. Thermoluminescence Dating of Stalagmitic Calcite. Archaeometry, 26(2): 155-170. doi: 10.1111/j.1475-4754.1984.tb00330.x
      [13] Engin, B., Güven, O., 1997. Thermoluminescence Dating of Denizli Travertines from the Southwestern Part of Turkey. Applied Radiation and Isotopes, 48(9): 1257-1264. doi: 10.1016/S0969-8043(97)00114-0
      [14] Engin, B., Güven, O., Köksal, F., 1999. Thermoluminescence and Electron Spin Resonance Properties of Some Travertines from Turkey. Applied Radiation and Isotopes, 51(6): 729-746. doi: 10.1016/S0969-8043(99)00091-3
      [15] Fairchild, I.J., Smith, C.L., Baker, A., et al., 2006. Modification and Preservation of Environmental Signals in Speleothems. Earth-Science Reviews, 75(1-4): 105-153. doi: 10.1016/j.earscirev.2005.08.003
      [16] Fattahi, M., Stokes, S., 2003. Dating Volcanic and Related Sediments by Luminescence Methods: A Review. Earth-Science Reviews, 62(3-4): 229-264. doi: 10.1016/S0012-8252(02)00159-9
      [17] Hu, C.Y., Henderson, G.M., Huang, J.H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4): 221-232. doi: 10.1016/j.epsl.2007.10.015
      [18] Huang, J.H., Hu, C.Y., Zhou, Q.F., 2000. High-Resolution Carbon and Oxygen Isotope Records from Stalagmite and Palaeoclimate in Heshangdong Cave, Qingjiang, Hubei Province. Earth Science—Journal of China University of Geosciences, 25(5): 505-509(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200005013.htm
      [19] Huang, Y.M., Fairchild, I.J., 2001. Partitioning of Sr2+ and Mg2+ into Calcite under Karst-Analogue Experimental Conditions. Geochimica et Cosmochimica Acta, 65(1): 47-62. doi: 10.1016/S0016-7037(00)00513-5
      [20] Johnson, K.R., Hu, C.Y., Belshaw, N.S., et al., 2006. Seasonal Trace-Element and Stable-Isotope Variations in a Chinese Speleothem: The Potential for High-Resolution Paleomonsoon Reconstruction. Earth and Planetary Science Letters, 244(1-2): 394-407. doi: 10.1016/j.epsl.2006.01.064
      [21] Johnson, N.M., 1960. Thermoluminescence in Biogenic Calcium Carbonate. Journal of Sedimentary Petrology, 30(2): 305-313. doi: 10.1306/74D70A29-2B21-11D7-8648000102C1865D
      [22] Liu, H.S., Hou, S.L., Fang, N.Q., et al., 2009. The Exploration of the Thermoluminescence Genesis of Deep-Sea Sedimentary Biological Carbonate Rocks. Progress in Nature Science, 19(9): 986-993(in Chinese).
      [23] Liu, X.G., Fang, N.Q., 2010. Thermoluminescence Anomaly of a Pelagic Core and Its Relation to Paleoclimate Change. Marine Geology & Quaternary Geology, 30(4): 165-169(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201004026.htm
      [24] Liu, Y.H., Henderson, G.M., Hu, C.Y., et al., 2013. Links between the East Asian Monsoon and North Atlantic Climate during the 8200 Year Event. Nature Geoscience, 6(2): 117-120. doi: 10.1038/ngeo1708
      [25] Mangini, A., Spötl, C., Verdes, P., 2005. Reconstruction of Temperature in the Central Alps during the Past 2000 yr from a δ18O Stalagmite Record. Earth and Planetary Science Letters, 235(3-4): 741-751. doi: 10.1016/j.epsl.2005.05.010
      [26] McDermott, F., 2004. Palaeo-Climate Reconstruction from Stable Isotope Variations in Speleothems: A Review. Quaternary Science Reviews, 23(7-8): 901-918. doi: 10.1016/j.quascirev.2003.06.021
      [27] McDonald, J., Drysdale, R., Hill, D., 2004. The 2002—2003 El Niňo Recorded in Australian Cave Drip Waters: Implications for Reconstructing Rainfall Histories Using Stalagmites. Geophysical Research Letters, 31(22): 1-4. doi: 10.1029/2004GL020859
      [28] Roque, C., Guibert, P., Vartanian, E., et al., 2001. Thermoluminescence—Dating of Calcite: Study of Heated Limestone Fragments from Upper Paleolithic Layers at Combe Saunière, Dordogne, France. Quaternary Science Reviews, 20(5-9): 935-938. doi: 10.1016/S0277-3791(00)00049-4
      [29] Shopov, Y., Stoykova, D., Tsankov, L., et al., 2000. Verification of the Cause of Glaciations and Sea Level Changes Using the Records of Calcite Speleothems. International Journal of Speleology, 29(1): 71-75. doi: 10.5038/1827-806X.29.1.3
      [30] Shopov, Y.Y., Ford, D.C., Schwarcz, H.P., 1994. Luminescent Microbanding in Speleothems: High-Resolution Chronology and Paleoclimate. Geology, 22(5): 407-410. doi: 10.1130/0091-7613(1994)022<0407:LMISHR>2.3.CO;2
      [31] Spötl, C., Mangini, A., Frank, N., et al., 2002. Start of the Last Interglacial Period at 135 ka: Evidence from a High Alpine Speleothem. Geology, 30(9): 815-818. doi: 10.1130/0091-7613(2002)030<0815:SOTLIP>2.0.CO;2
      [32] Tan, M., Baker, A., Genty, D., et al., 2006. Applications of Stalagmite Laminae to Paleoclimate Reconstructions: Comparison with Dendrochronology/Climatology. Quaternary Science Reviews, 25(17-18): 2103-2117. doi: 10.1016/j.quascirev.2006.01.034
      [33] Tan, M., Liu, T.S., Hou, J.Z., et al., 2003. Cyclic Rapid Warming on Centennial-Scale Revealed by a 2650 year Stalagmite Record of Warm Season Temperature. Geophysical Research Letters, 30(12): 1617-1620. doi: 10.1029/2003GL017352
      [34] Tatumi, S.H., Nagatomo, T., Matsuoka, M., et al., 1993. Thermoluminescence and ESR in an Aragonite Speleothem. Journal of Physics D: Applied Physics, 26(9): 1482-1486. doi: 10.1088/0022-3727/26/9/022
      [35] Vass, I., Govindjee, 1996. Thermoluminescence from the Photosynthetic Apparatus. Photosynthesis Research, 48(1-2): 117-126. doi: 10.1007/BF00041002
      [36] Wang, W.Y., Liu, J.Q., Pan, M., et al., 2000. Reconstruction of the High Resolution Timescale in the Weinan Loess Section of the Late Quaternary. Earth Science—Journal of China University of Geosciences, 25(1): 98-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200001020.htm
      [37] Wang, Y.J., Cheng, H., Edwards, R.L., et al., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294: 2345-2348. doi: 10.1126/science.1064618
      [38] Wang, Y.J., Cheng, H., Edwards, R.L., et al., 2005. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 308: 854-857. doi: 10.1126/science.1106296
      [39] Wang, Y.J., Cheng, H., Edwards, R.L., et al., 2008. Millennial- and Orbital-Scale Changes in the East Asian Monsoon over the Past 224000 Years. Nature, 451: 1090-1093. doi: 10.1038/nature06692
      [40] Wintle, A.G., 1978. A Thermoluminescence Dating Studying of Some Quaternary Calcite: Potential and Problems. Canadian Journal of Earth Science, 15(12): 1977-1986. doi: 10.1139/e78-208
      [41] Wintle, A.G., Huntley, D.J., 1980. Thermoluminescence Dating of Ocean Sediments. Canadian Journal of Earth Science, 17(3): 348-360. doi: 10.1139/e80-034
      [42] Wu, X.P., Wu, J.K., Hou, D.J., et al., 2013. Characteristics and Variability of Heinrich-2 Event by Stalagmite Oxygen Isotopic Composition in the Western Loess Plateau. Earth Science—Journal of China University of Geosciences, 38(3): 471-481(in Chinese with English abstract). http://www.researchgate.net/publication/286044434_Characteristics_and_variability_of_heinrich-2_event_recorded_by_stalagmite_oxygen_isotopic_composition_in_the_Western_Loess_Plateau
      [43] Yuan, D.X., Cheng, H., Edwards, R.L., et al., 2004. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science, 304: 575-578. doi: 10.1126/science.1091220
      [44] Zhang, P.Z., Cheng, H., Edwards, R.L., et al., 2008. A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record. Science, 322: 940-942. doi: 10.1126/science.1163965
      [45] 黄俊华, 胡超涌, 周群峰, 2000. 湖北清江和尚洞石笋的高分辨率碳氧同位素及古气候研究. 地球科学——中国地质大学学报, 25(5): 505-509. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005013.htm
      [46] 刘海生, 侯胜利, 方念乔, 等, 2009. 深海沉积生物碳酸盐岩天然热释光成因初探. 自然科学进展, 19(9): 986-993. doi: 10.3321/j.issn:1002-008X.2009.09.012
      [47] 刘宪光, 方念乔, 2010. 远洋沉积岩心天然热释光剖面的异常特征与古气候变化的关系. 海洋地质与第四纪地质, 30(4): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201004026.htm
      [48] 王文远, 刘嘉麒, 潘懋, 等, 2000. 末次间冰期以来渭南黄土剖面高分辨率古气候标尺. 地球科学——中国地质大学学报, 25(1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200001020.htm
      [49] 吴秀平, 吴锦奎, 侯典炯, 等, 2013. 黄土高原西部石笋记录的H2事件特征. 地球科学——中国地质大学学报, 38(3): 471-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303006.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  2962
    • HTML全文浏览量:  194
    • PDF下载量:  388
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-07-14
    • 刊出日期:  2014-04-15

    目录

      /

      返回文章
      返回