Responses of Surface Vegetation on Soil Temperature and Moisture of the Active Layer in the Source Area of the Yellow River
-
摘要: 植被和活动层水热关系是青藏高原冻土生态环境的重要组成部分,对气候变化和工程活动积极响应,是目前全球变化研究的热点之一.为了解植被差异对活动层水热过程的影响,以场地监测和植被调查数据为基础,分析了黄河源区高温高海拔多年冻土区同一地貌单元内局地条件相似而植被差异显著的3个场地活动层温度和水分变化.初步结果表明:植被盖度较低时,活动层水分含量也低,且含水量高值区趋于中下部;植被盖度较高时,冷季地气温差和温度位移都减小,暖季地气温差增大;随着植被盖度增大,冻融开始和结束时间明显滞后,冻融持续时间延长.初步揭示了黄河源区地表植被对活动层水分和温度的影响过程,对研究和保护高寒生态环境稳定具有重要意义.Abstract: Relationships of the vegetation and active layer are the foci of global change study since the interaction between the vegetation and hydrothermal processes of the active layer are important part of Qinghai-Tibet Plateau permafrost ecosystems, and they are liable to react on the global warming and anthropogenic activities. Based on the analysis of soil temperature and unfrozen water content of the active layer, surveys of vegetation, the influences of vegetation on the variations of hydrothermal processes of the active layer in the source area of the Yellow River (SAYR) are studied. Preliminary results show that variations of unfrozen water content and soil temperature of the active layer are significantly affected by vegetation cover, above-ground biomass, and dominant species. The distribution unfrozen water content is consistent with the vegetation coverage. The offsets between the ground surface temperature and air temperature, which are affected by the vegetation cover, are higher in winter-time and lower in summer-time. The beginning of freezing is latter, the finishing of freezing is earlier, and the duration of freezing is longer for those sites with higher vegetation cover. With lowering of vegetation cover, zones with higher content of unfrozen water shift towards the bottom of the active layer. This study reveals the effects of variations of vegetation on soil temperature and unfrozen water content of the active layer for warm, and high-altitude permafrost in the SAYR, and will also facilitate the research and protection of cold eco-environments in the SAYR.
-
Key words:
- active layer /
- hydrothermal variation /
- vegetation /
- response /
- climate change /
- source area of the Yellow River
-
表 1 黄河源区麻多乡场地植被特征
Table 1. Vegetation characteristics in Maduo sites in the sources areas of the Yellow River
场地编号 优势种 主要伴生种 植被盖度(%) 丰富度 地上生物量(g·m-2) 土壤质地 MDX1 藏嵩草 线叶嵩草、黑穗苔草、矮嵩草、毛茛、龙胆、虎尾草、火绒草、黄芪等 83 13 370.3 中粗砂 MDX2 矮嵩草 早熟禾、小嵩草、苔草、香青、棘豆、龙胆、沙生风毛菊、毛茛等 25 18 46.4 粉土、粉砂 MDX3 小嵩草 矮嵩草、火绒草、芸香叶唐松草、雪白委陵菜、早熟禾、棘豆、苔草、沙生风毛菊、垂头菊等 60 8 94.5 红褐砂粘土和砾石 -
[1] Burn, C.R., Smith, C.A.S., 1988. Observations of the Thermal Offset in Near-Surface Mean Annual Ground Temperatures at Several Sites near Mayo Yukon Territory, Canada. Arctic, 41(2): 99-104. http://www.researchgate.net/profile/C_Burn/publication/254123826_Observations_of_the_Thermal_Offset_in_Near-Surface_Mean_Annual_Ground_Temperatures_at_Several_Sites_near_Mayo_Yukon_Territory_Canada/links/54ff18020cf2741b69f2adf2.pdf [2] Chen, S.Y., Zhao, L., Qin, D.H., et al., 2010. A Preliminary Study of the Relationships between Alpine Grassland Biomass and Environmental Factors in the Permafrost Regions of the Tibetan Plateau. Journal of Glaciology and Geocryology, 32(2): 405-413(in Chinese with English abstract). [3] Cheng, G.D., 2003. Influences of Local Factors on Permafrost Occurrence and Their Implications for Qinghai-Xizang Railway Design. Science in China (Series D), 33(6): 602-607 (in Chinese). http://earth.scichina.com:8080/sciDe/CN/article/downloadArticleFile.do?attachType=PDF&id=306900 [4] Hao, Z.C., Li, L., Wang, J.H., et al., 2007. Impact of Climate Change on Surface Water Resources. Earth Science—Journal of China University of Geosciences, 32(3): 425-432 (in Chinese with English abstract). http://www.researchgate.net/publication/288643572_Impact_of_climate_change_on_surface_water_resources [5] Hu, H.C., Wang, G.X., Wang, Y.B., et al., 2009. Response of Soil Heat-Water Processes to Vegetation Cover on the Typical Permafrost and Seasonally Frozen Soil in the Headwaters of the Yangtze and Yellow Rivers. Chinese Science Bulletin, 54(2): 242-250 (in Chinese). doi: 10.1360/csb2009-54-2-242 [6] Jin, H.J., Sun, L.P., Wang, S.L., et al., 2008. Dual Influences of Local Environmental Variables on Ground Temperatures on the Interior-Eastern Qinghai-Tibet Plateau (I): Vegetation and Snow Cover. Journal of Glaciology and Geocryology, 30(4): 535-545(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2008AGUFMGC21A0728J [7] Li, Y.S., Wang, G.X., Zhao, L., et al., 2010. Response of Soil Moisture in the Permafrost Active Layer to the Change of Alpine Meadow Coverage on the Tibetan Plateau. Journal of Glaciology and Geocryology, 32(1): 157-165(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BCDT201001022.htm [8] Liang, S.H., Wan, L., Li, Z.M., et al., 2007. The Effect of Permafrost on Alpine Vegetation in the Source Regions of the Yellow River. Journal of Glaciology and Geocryology, 29(1): 45-52(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=24096635 [9] Liu, G.S., Wang, G.X., Hu, H.C., et al., 2009. Influence of Vegetation Coverage on Water and Heat Processes of the Active Layer in Permafrost Regions of the Tibetan Plateau. Journal of Glaciology and Geocryology, 31(1): 89-95(in Chinese with English abstract). http://www.researchgate.net/publication/303133245_Influence_of_vegetation_coverage_on_water_and_heat_processes_of_the_active_layer_in_permafrost_regions_of_the_Tibetan_Plateau [10] Lu, Z.J., Wu, Q.B., Sheng, Y., et al., 2006. Heat and Water Difference of Active Layers beneath Different Surface Conditions near Beiluhe in Qinghai-Xizang Plateau. Journal of Glaciology and Geocryology, 28(5): 642-647(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BCDT200605002.htm [11] Luo, D.L., Jin, H.J., Lin, L., et al., 2012. New Progress on Permafrost Temperature and Thickness in the Source Area of the Huanghe River. Scientia Geographica Sinica, 32(7): 898-904(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DLKX201207020.htm [12] Luo, D.L., Jin, H.J., Lin, L., et al., 2013. Distributive Features and Controlling Factors of Permafrost and the Active Layer Thickness in the Bayan Har Mountains along the Qinghai-Kangding Highway on Northeastern Qinghai-Tibet Plateau. Scientia Geographica Sinica, 33(5): 635-640(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=45897191 [13] Mu, C.C., Zhang, T.J., Cao, B., et al., 2013. Study of the Organic Carbon Storage in the Active Layer of Permafrost over the Eboling Mountain in the Upper Reaches of the Heihe River in the Eastern Qilian Moutains. Journal of Glaciology and Geocryology, 35(1): 1-9(in Chinese with English abstract). http://www.researchgate.net/publication/303114498_Study_of_the_organic_carbon_storage_in_the_active_layer_of_the_permafrost_over_the_Eboling_Mountain_in_the_upper_reaches_of_the_Heihe_River_in_the_Eastern_Qilian_Mountains [14] Romanovsky, V.E., Osterkamp, T.E., 1995. Interannual Variations of the Thermal Regime of the Active Layer and Near-Surface Permafrost in Northern Alaska. Permafrost and Periglacial Processes, 6(4): 313-335. doi: 10.1002/ppp.3430060404 [15] Wang, G.X., Li, Y.S., Wu, Q.B., et al., 2006. Impacts of Permafrost Changes on Alpine Ecosystem in Qinghai-Tibet Plateau. Science in China(Series D), 36(8): 743-754(in Chinese). http://d.wanfangdata.com.cn/Periodical_zgkx-ed200611004.aspx [16] Wang, G.X., Liu, L.A., Liu, G.S., et al., 2010. Impacts of Grassland Vegetation Cover on the Active-Layer Thermal Regime, Northeast Qinghai-Tibet Plateau, China. Permafrost and Periglacial Processes, 21(4): 335-344. doi: 10.1002/ppp.699 [17] Wang, Z.R., Yang, G.J., He, X.B., et al., 2012. Response of Distribution Patterns of Plant Species Diversity and Biomass to Permafrost Changes. Acta Prataculturae Sinica, 21(1): 10-17(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CYXB201201003.htm [18] Wu, Q.B., Shen, Y.P., Shi, B., 2003. Relationship between Frozen Soil together with Its Water-Heat Process and Ecological Environment in the Tibetan Plateau. Journal of Glaciology and Geocryology, 25(3): 250-255(in Chinese with English abstract). http://bcdt.westgis.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=1371 [19] Zhou, D., Zhang, Z.F., Long, F., et al., 2013. Mapping Buried Faults Using the Temperature-Vegetation-Dryness Index with an Application in Yangla Copper Mining Area, Yunnan. Earth Science—Journal of China University of Geosciences, 38(2): 423-430 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.042 [20] Zhou, J., Wang, G.X., Li, X., et al., 2008. Energy-Water Balance of Meadow Ecosystem in Cold Frozen Soil Areas. Journal of Glaciology and Geocryology, 30(3): 398-407(in Chinese with English abstract). http://www.researchgate.net/publication/283917329_Energy-water_balance_of_meadow_ecosystem_in_cold_frozen_soil_areas [21] 陈生云, 赵林, 秦大河, 等, 2010. 青藏高原多年冻土区高寒草地生物量与环境因子关系的初步分析. 冰川冻土, 32(2): 405-413. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201002026.htm [22] 程国栋, 2003. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示. 中国科学(D辑), 33(6): 602-607. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200306014.htm [23] 郝振纯, 李丽, 王加虎, 等, 2007. 气候变化对地表水资源的影响. 地球科学——中国地质大学学报, 32(3): 425-432. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703017.htm [24] 胡宏昌, 王根绪, 王一博, 等, 2009. 江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应. 科学通报, 54(2): 242-250. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200902019.htm [25] 金会军, 孙立平, 王绍令, 等, 2008. 青藏高原中、东部局地因素对地温的双重影响(I): 植被和雪盖. 冰川冻土, 30(4): 535-545. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200804002.htm [26] 李元寿, 王根绪, 赵林, 等, 2010. 青藏高原多年冻土活动层土壤水分对高寒草甸覆盖变化的响应. 冰川冻土, 32(1): 157-165. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201001022.htm [27] 梁四海, 万力, 李志明, 等, 2007. 黄河源区冻土对植被的影响. 冰川冻土, 29(1): 45-52. doi: 10.3969/j.issn.1000-0240.2007.01.008 [28] 刘光生, 王根绪, 胡宏昌, 等, 2009. 青藏高原多年冻土区植被盖度变化对活动层水热过程的影响. 冰川冻土, 31(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200901012.htm [29] 陆子建, 吴青柏, 盛煜, 等, 2006. 青藏高原北麓河附近不同地表覆被下活动层的水热差异研究. 冰川冻土, 28(5): 642-647. doi: 10.3969/j.issn.1000-0240.2006.05.003 [30] 罗栋梁, 金会军, 林琳, 等, 2012. 黄河源区多年冻土温度及厚度研究新进展. 地理科学, 32(7): 898-904. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201207020.htm [31] 罗栋梁, 金会军, 林琳, 等, 2013. 巴颜喀拉山青康公路沿线多年冻土和活动层分布特征及影响因素. 地理科学, 33(5): 635-640. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201305019.htm [32] 牟翠翠, 张廷军, 曹斌, 等, 2013. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究. 冰川冻土, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301002.htm [33] 王根绪, 李元首, 吴青柏, 等, 2006. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响. 中国科学(D辑), 36(8): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200608006.htm [34] 王增如, 杨国靖, 何晓波, 等, 2012. 物种多样性和生物量分布规律对冻土活动层埋深变化的响应. 草业学报, 21(1): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201201003.htm [35] 吴青柏, 沈永平, 施斌, 2003. 青藏高原冻土及水热过程与寒区生态环境的关系. 冰川冻土, 25(3): 250-255. doi: 10.3969/j.issn.1000-0240.2003.03.002 [36] 周丹, 张振飞, 龙斐, 等, 2013. 用温度植被干旱指数(TVDI)识别隐伏断层: 以云南羊拉铜矿区为例. 地球科学——中国地质大学学报, 38(2): 423-430. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302026.htm [37] 周剑, 王根绪, 李新, 等, 2008. 高寒冻土地区草甸草地生态系统的能量-水分平衡分析. 冰川冻土, 30(3): 398-407. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200803006.htm