Reservoir Diagenetic Facies and Porosity Evolution Pathways of Chang 8 Formation in Huachi, Ordos Basin
-
摘要: 为探讨成岩作用与储层物性演化特征之间的成因联系,查明不同成岩相物性差异的成因及其形成过程,对华池地区长8储层各成岩相的孔隙度演化进行了定量模拟,分析了其孔隙度演化路径的差异.本区绿泥石膜胶结成岩相、不稳定组分溶蚀成岩相、压实充填成岩相与碳酸盐致密胶结成岩相压实损失孔隙度分别为17.6%、20.5%、25.8%和11.4%,早期胶结损失孔隙度为4.5%、4.9%、5.6%和24.9%,溶蚀增加孔隙度为1.4%、2.3%、0.2%和0,晚期胶结损失孔隙度为7.8%、9.7%、3.2%和0.沉积物初始组构差异造成的各成岩相初始孔隙度差别是微小的,但其在很大程度上控制了成岩作用的类型和强度,从而造成了不同成岩相经历了不同的成岩变化过程和孔隙度演化路径,形成了现今组构面貌和孔隙度的差异.Abstract: In order to analyze the genetic relationship between diagenesis and reservoir porosity evolution process and the formation process of physical property difference in different diagenetic facies, diagenesis types and facies of Chang 8 formation are studied in Huachi, Ordos basin. Furthermore, porosity evolutions of different diagenesis facies are simulated quantitatively, and their pathways are analyzed. According to the diagenesis characteristics, the reservoirs can be divided into four diagenesis facies, namely, grain-coating chlorite cementation, corrosion of unstable components, intense compaction with packing and dense carbonate cementation. COPL (compactional porosity loss) of them are 17.6%, 20.5%, 25.8% and 11.4% respectively; CEPL (cementational porosity loss) by early quartz overgrowth, grain-coating chlorite, and carbonate are 4.5%, 4.9%, 5.6% and 24.9% respectively; CRPI (corrosional porosity increase) are 1.4%, 2.3%, 0.2% and 0 respectively; CEPL by late pore-filling chlorite, kaolinite, illite, ferrocalcite and ferrodolomite are 7.8%, 9.7%, 3.2% and 0 respectively. The porosity evolution pathways of different diagenesis facies show that the differences of OP (original porosity) caused by the sediment components and structures are tiny, but the diagenesis types and grades are controlled by sedimentary processes to a great extent. It is concluded that the reservoirs with diagenesis facies have different diagenetic changes and porosity evolution pathways, which results in differences of components, structures and physical properties.
-
Key words:
- diagenesis /
- grain-coating chlorite /
- sediments /
- porosity evolution /
- hydrocarbons /
- Ordos basin
-
图 1 华池地区长8储层铸体薄片与扫描电镜照片
a.强压实作用下黑云母(Ms)变形,元297井,2 291.48 m,单偏光;b.颗粒半定向排列,白436井,2 187.30 m,单偏光;c.充填粒间孔隙的微晶方解石(Ca),白451井,2 168.54 m,扫描电镜;d.铁方解石(Cf)连晶状充填孔隙,里126井,2 163.94 m,单偏光;e.白云岩岩屑的铁白云石(Df)加大边,坪110井,2 212.58 m,单偏光;f.绿泥石膜(Ch)与粒表微晶石英(Qu),白168井,2 241.80 m,扫描电镜;g.充填孔隙的玫瑰花状绿泥石(Ch),午61井,2 154.00 m,扫描电镜;h.书页状高岭石(Kao),白306井,2 061.70 m,扫描电镜;i.伊利石(I)与微晶石英(Qu),白455井,2 147.58 m,扫描电镜;j.硅质(Qu)次生加大,罗33井,2 823.30 m,正交偏光;k.微晶石英(Qu)与绿泥石膜(Ch),山120井,2 124.92 m,扫描电镜;l.长石次生加大(Feld),白455井,2 147.00 m,扫描电镜;m.长石(Feld)高岭石(Kao)化,白428井,2 282.60 m,单偏光;n.长石溶孔(Fs),白456井,2 134.80 m,单偏光;o.岩屑溶孔(Rs)和长石溶孔(Fs),白260井,2 045.92 m,单偏光
Fig. 1. Casting sections and SEM of Chang 8 reservoir in Huachi
表 1 华池地区长8储层成岩相类型与特征
Table 1. The types and characteristics of diagenetic facies of Chang 8 reservoir in Huachi
成岩相类型 成分与结构 孔喉类型与大小 物性 沉积微相 绿泥石膜胶结成岩相 中-细粒长石砂岩或岩屑质长石砂岩,分选较好,杂基含量低,胶结物主要为颗粒包膜和孔隙衬里绿泥石、伊利石,可见少量硅质与铁方解石、铁白云石 残余粒间孔为主,长石溶孔次之,微孔较少,平均孔径43.77 μm;压实成因的可变断面收缩部分喉道型或压实胶结混合成因的片状弯片状喉道为主,平均喉道中值半径0.34 μm Ф:8.7%~16.8%,平均12.76%;K:0.17~30.23 mD,平均2.69 mD 水下分流河道与河口坝中央部位 不稳定组分溶蚀成岩相 细-中粒岩屑质长石砂岩或长石质岩屑砂岩,分选中等-好,胶结物主要为伊利石、高岭石、硅质与铁方解石、铁白云石,偶见绿泥石膜 长石溶孔、岩屑溶孔为主,残余粒间孔次之,微孔较少,平均孔径31.85 μm;以压实胶结混合成因的片状弯片状喉道为主,平均喉道中值半径0.23 μm Ф:5.7%~13.8%,平均9.98%;K:0.06~4.07 mD,平均0.62 mD 水下分流河道 压实充填成岩相 细-中粒、极细粒长石质岩屑砂岩为主,分选中等-较差,胶结物主要为硅质、伊利石和高岭石,偶见碳酸盐胶结物 残余粒间孔、小溶孔和微孔为主,平均孔径16.77 μm;胶结物内的管束状喉道和压实胶结混合成因的片状弯片状喉道很少,平均喉道中值半径0.11 μm Ф:3.2%~10.4%,平均7.34%;K:0.03~0.58 mD,平均0.15 mD 水下分流河道与河口坝边缘、席状砂 碳酸盐致密胶结成岩相 细-中粒岩屑质长石砂岩或长石质岩屑砂岩,分选中等-较差,胶结物主要为方解石、铁方解石,局部可见硅质胶结物 晶间孔为主,残余粒间孔较少,平均孔径8.32 μm;胶结物内的管束状喉道为主,压实胶结混合成因的片状弯片状喉道很少,平均喉道中值半径0.07 μm Ф:1.1%~6.8%,平均4.52%;K:0.02~0.21 mD,平均0.08 mD 水下分流河道与河口坝顶底部与边缘、分流间湾薄砂层 表 2 不同成岩相孔隙度演化数据
Table 2. The porosity evolution parameters of diagenetic facies
成岩相 初始孔隙度(%) 压实损失孔隙度(%) 早期胶结损失孔隙度(%) 溶蚀增加孔隙度(%) 晚期胶结损失孔隙度(%) 计算目前孔隙度(%) 岩心孔隙度(%) 绝对误差(%) 绿泥石膜胶结成岩相 39.8 17.6 4.5 1.4 7.8 13.5 13.7 -0.2 不稳定组分溶蚀成岩相 40.2 20.5 4.9 2.3 9.7 9.4 8.9 0.5 压实充填成岩相 38.7 25.8 5.6 0.2 3.2 6.1 6.8 -0.7 碳酸盐致密胶结成岩相 37.9 11.4 24.9 0.0 0.0 1.7 3.4 -1.7 研究区平均值 39.5 18.9 5.9 0.9 7.6 8.9 9.6 -0.7 表 3 不同成岩作用后各成岩相孔隙度数据
Table 3. The porosity evolution parameters of diagenetic facies in different diagenetic changes
成岩相 初始孔隙度(%) 压实后孔隙度(%) 早期胶结后孔隙度(%) 溶蚀后孔隙度(%) 晚期胶结后孔隙度(%) 绿泥石膜胶结成岩相 39.8 26.7 21.2 22.9 13.5 不稳定组分溶蚀成岩相 40.2 24.9 18.7 21.6 9.4 压实充填成岩相 38.7 17.7 10.1 10.4 6.1 碳酸盐致密胶结成岩相 37.9 29.9 1.7 1.7 1.7 -
[1] Beard, D.C., Weyl, P.K., 1973. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bulletin, 57(2): 349-369. http://aapgbull.geoscienceworld.org/content/57/2/349 [2] Berger, A., Gier, S., Krois, P., 2009. Porosity-Preserving Chlorite Cements in Shallow-Marine Volcaniclastic Sandstones: Evidence from Cretaceous Sandstones of the Sawan Gas Field, Pakistan. AAPG Bulletin, 93(5): 595-615. doi: 10.1306/01300908096 [3] Billault, V., Beaufort, D., Baronnet, A., et al., 2003. A Nanopetrographic and Textural Study of Grain-Coating Chlorites in Sandstone Reservoirs. Clay Minerals, 38: 315-328. doi: 10.1180/0009855033830098 [4] Bloch, S., Lander, R.H., Bonnell, L., 2002. Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs: Origin and Predictability. AAPG Bulletin, 86(2): 301-328. doi: 10.1306/61EEDABC-173E-11D7-8645000102C1865 [5] Ehrenberg, S.N., 1995. Measuring Sandstone Compaction from Modal Analyses of Thin Sections: How to do It and What the Results Mean. Journal of Sediment Research, 65(2a): 369-379. doi: 10.1306/D42680C7-2B26-11D7-8648000102C1865D [6] Grigsby, J.D., 2001. Origin and Growth Mechanism of Authigenic Chlorite in Sandstones of the Lower Vicksburg Formation, South Texas. Journal of Sediment Research, 71(1): 27-36. doi: 10.1306/060100710027 [7] Haddad, S.C., Worden, R.H., Prior, D.J., et al., 2006. Quartz Cement in the Fontainebleau Sandstone, Paris Basin, France: Crystallography and Implications for Mechanisms of Cement Growth. Journal of Sedimentary Research, 76(2): 244-256. doi: 10.2110/jsr.2006.024 [8] He, S., Yang, Z., He, Z.L., et al., 2009. Mechanism of Carbonate Cementation and Secondary Dissolution Porosity Formation in Deep-Burial Sandstones near the Top Overpressured Surface in Central Part of Junggar Basin. Earth Science—Journal of China University of Geosciences, 34(5): 759-768, 798 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.084 [9] Huang, S.J., Xie, L.W., Zhang, M., et al., 2004. Formation Mechanism of Authigenic Chlorite and Relation to Preservation of Porosity in Nonmarine Triassic Reservoir Sandstones, Ordos Basin and Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 31(3): 273-281(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CDLG200403009.htm [10] Lan, Y.F., Huang, S.J., Lü, J., 2011. Influences of Authigenic Chlorite on Pore Structure in Sandstone Reservoir: A Case Study from Upper Triassic Yanchang Formation in Ordos Basin, China. Geological Bulletin of China, 30(1): 134-140(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201101015.htm [11] Lander, R.H., Larese, R.E., Bonnell, L.M., 2008. Toward More Accurate Quartz Cement Models: The Importance of Euhedral versus Noneuhedral Growth Rates. AAPG Bulletin, 92(11): 1537-1563. doi: 10.1306/07160808037 [12] Li, D.Y., Zhang, J.L., Jiang, X.D., et al., 2013. Diagenesis and Its Effect on Dainan Sandstone Reservoir in Zhenwu-Caozhuang Region of Southern Slope of Gaoyou Depression. Earth Science—Journal of China University of Geosciences, 38(1): 130-142(in Chinese with English abstract). doi: 10.3799/dqkx.2013.013 [13] Li, H., Liu, Y.Q., Liu, L.Y., 2006. Diagenesis of Chang 81 Reservoir with Low Permeability in Xifeng Oilfield, Ordos Basin. Oil & Gas Geology, 27(2): 209-217(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200602011.htm [14] Li, W.G., Zhang, X.P., Zhong, Y.M., 2005. Formation Mechanism of Secondary Dissolved Pores in Arcose. Oil & Gas Geology, 26(2): 220-229 (in Chinese with English abstract). http://www.researchgate.net/publication/287641159_Formation_mechanism_of_secondary_dissolved_pores_in_arcose [15] Liu, L.Y., Chen, G., Liu, Y.Q., et al., 1998. Analysis on Influencing Factors of Solution-Type Secondary Pore-Evolution in Clastic Reservoirs. Acta Sedimentologica Sinica, 16(2): 97-101(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/QK199800006529 [16] Makowitz, A., Lander, R.H., Milliken, K.L., 2006. Diagenetic Modeling to Assess the Relative Timing of Quartz Cementation and Brittle Grain Processes during Compaction. AAPG Bulletin, 90(6): 873-885. doi: 10.1306/12190505044 [17] McBride, E.F., Picard, M.D., Milliken, K.L., 2003. Calcite-Cemented Concretions in Cretaceous Sandstone, Wyoming and Utah, U.S.A. . Journal of Sedimentary Research, 73(3): 462-483. doi: 10.1306/111602730462 [18] Paxton, S.T., Szabo, J.O., Ajdukiewicz, J.M., et al., 2002. Construction of an Intergranular Volume Compaction Curve for Evaluating and Predicting Compaction and Porosity Loss in Rigid-Grain Sandstone Reservoirs. AAPG Bulletin, 86(12): 2047-2067. doi: 10.1306/61EEDDFA-173E-11D7-864500010241865D [19] Scherer, M., 1987. Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction. AAPG Bulletin, 71(5): 485-491. doi: 10.1306/703C80FB-1707-11D7-8645000102C1865D [20] Shi, Y.J., Xiao, L., Mao, Z.Q., et al., 2011. An Identification Method for Diagenetic Facies with Well Logs and Its Geological Significance in Low-Permeability Sandstones: A Case Study on Chang 8 Reservoirs in the Jiyuan Region, Ordos Basin. Acta Petrolei Sinica, 32(5): 820-828(in Chinese with English abstract). http://www.researchgate.net/publication/287728260_An_identification_method_for_diagenetic_facies_with_well_logs_and_its_geological_significance_in_low-permeability_sandstones_A_case_study_on_Chang_8_reservoirs_in_the_Jiyuan_region_Ordos_Basin [21] Yao, J.L., Wang, Q., Zhang, R., et al., 2011. Forming Mechanism and Their Environmental Implications of Chlorite-Coatings in Chang 6 Sandstone(Upper Triassic) of Hua-Qing Area, Ordos Basin. Acta Sedimentologica Sinica, 29(1): 72-79(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201101009.htm [22] Zhang, M.S., Lei, B.J., Huang, Y.G., et al., 2011. Diagenesis and Diagenetic Facies of Sandstones Reservoir in the Upper Palaeozoic Shan23 of Yuxingzhuang-Zizhou Area, Ordos Basin. Acta Sedimentologica Sinica, 29(6): 1031-1040(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201106003.htm [23] Zhang, X., Lin, C.M., Chen, Z.Y., 2011. Characteristics of Chlorite Minerals from Upper Triassic Yanchang Formation in the Zhenjing Area, Ordos Basin. Acta Geologica Sinica, 85(10): 1659-1671(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dizhixb201110008 [24] Zhang, X.X., Zou, C.N., Tao, S.Z., et al., 2010. Diagenetic Facies Types and Semiquantitative Evaluation of Low Porosity and Permeability Sandstones of the Fourth Member Xujiahe Formation Guangan Area, Sichuan Basin. Acta Sedimentologica Sinica, 28(1): 50-57(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cjxb201001007 [25] Zhang, X.X., Zou, C.N., Zhu, R.K., et al., 2011. Reservoir Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Central Sichuan Basin. Acta Petrolei Sinica, 32(2): 257-264(in Chinese with English abstract). http://www.researchgate.net/publication/288284180_Reservoir_diagenetic_facies_of_the_Upper_Triassic_Xujiahe_Formation_in_the_central_Sichuan_Basin [26] Zou, C.N., Tao, S.Z., Zhou, H., et al., 2008. Genesis, Classification and Evaluation Method of Diagenetic Facies. Petroleum Exploration and Development, 35(5): 526-540(in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60086-0 [27] 何生, 杨智, 何治亮, 等, 2009. 准噶尔盆地腹部超压顶面附近深层砂岩碳酸盐胶结作用和次生溶蚀孔隙形成机理. 地球科学——中国地质大学学报, 34(5): 759-768. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905008.htm [28] 黄思静, 谢连文, 张萌, 等, 2004. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系. 成都理工大学学报(自然科学版), 31(3): 273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009 [29] 兰叶芳, 黄思静, 吕杰, 2011. 储层砂岩中自生绿泥石对孔隙结构的影响: 来自鄂尔多斯盆地上三叠统延长组的研究结果. 地质通报, 30(1): 134-140. doi: 10.3969/j.issn.1671-2552.2011.01.014 [30] 李德勇, 张金亮, 姜效典, 等, 2013. 高邮凹陷南坡真武-曹庄地区戴南组砂岩成岩作用及其对储层性质的影响. 地球科学——中国地质大学学报, 38(1): 130-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301017.htm [31] 李红, 柳益群, 刘林玉, 2006. 鄂尔多斯盆地西峰油田延长组长81低渗透储层成岩作用. 石油与天然气地质, 27(2): 209-217. doi: 10.3321/j.issn:0253-9985.2006.02.011 [32] 李汶国, 张晓鹏, 钟玉梅, 2005. 长石砂岩次生溶孔的形成机理. 石油与天然气地质, 26(2): 220-229. doi: 10.3321/j.issn:0253-9985.2005.02.016 [33] 刘林玉, 陈刚, 柳益群, 等, 1998. 碎屑岩储集层溶蚀型次生孔隙发育的影响因素分析. 沉积学报, 16(2): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB802.017.htm [34] 石玉江, 肖亮, 毛志强, 等, 2011. 低渗透砂岩储层成岩相测井识别方法及其地质意义: 以鄂尔多斯盆地姬塬地区长8段储层为例. 石油学报, 32(5): 820-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201105013.htm [35] 姚泾利, 王琪, 张瑞, 等, 2011. 鄂尔多斯盆地华庆地区延长组长6砂岩绿泥石膜的形成机理及其环境指示意义. 沉积学报, 29(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201101009.htm [36] 张明松, 雷卞军, 黄有根, 等, 2011. 鄂尔多斯盆地余兴庄-子洲地区上古生界山23储层砂岩成岩作用与成岩相. 沉积学报, 29(6): 1031-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201106003.htm [37] 张霞, 林春明, 陈召佑, 2011. 鄂尔多斯盆地镇泾区块上三叠统延长组砂岩中绿泥石矿物特征. 地质学报, 85(10): 1659-1671. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110010.htm [38] 张响响, 邹才能, 陶士振, 等, 2010. 四川盆地广安地区上三叠统须家河组四段低孔渗砂岩成岩相类型划分及半定量评价. 沉积学报, 28(1): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001008.htm [39] 张响响, 邹才能, 朱如凯, 等, 2011. 川中地区上三叠统须家河组储层成岩相. 石油学报, 32(2): 257-264. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102011.htm [40] 邹才能, 陶士振, 周慧, 等, 2008. 成岩相的形成、分类与定量评价方法. 石油勘探与开发, 35(5): 526-540. doi: 10.3321/j.issn:1000-0747.2008.05.002