Sedimentary Response to Interaction between Alongslope and Downslope Currents in Daihai Lake, North China
-
摘要: 为了探讨陆相湖盆中沿坡流的作用强度及其对三角洲前缘沉积的影响,对内蒙古岱海断陷湖盆的现代沉积进行了调查.通过卫星图像分析、现场湖浪观察与浮球实测、探槽挖掘与详细沉积特征描述、取样与样品分析、以及骨架剖面砂体对比,证明岱海湖盆陡坡带以顺坡流作用为主,分流河道和河口坝发育,砂体垂向连通性好,常形成大套块状砂体;缓坡带的三角洲前缘存在强烈的沿坡流与顺坡流相互作用,浪成成因的岩相最为发育,沙质沉积物席状化严重,垂向序列呈不明显的反韵律,河口砂体不对称分布,沿坡漂流的上游方向砂体连片、多层叠置、侧向连通性好;下游方向泥质夹层发育、砂体孤立、储层非均质性强.Abstract: In order to confirm the intensity of alongslope current in lacustrine basin and its effect on the sedimentation of delta front, the modern sedimentation of fault-depression lacustrine basin (Daihai Lake) in Inner Mongolia, North China has been explored in this study. Based on analysis of satellite images, on-site wave observation and floating ball measurement, trench excavation, sedimentary characteristics description, sample analysis, and sandbodies comparison at the framework section, it can be concluded that the steep side of Daihai lacustrine basin was dominated by the process of downslope current, where distributary channels and river mouth bar were developed with good connectivity of sandbodies in vertical, forming large set of massive sandbodies; the interaction between downslope and alongslope currents can be found in the delta front of the gentle side, where the wave-genetic lithofacies was well-developed with sandy sediments sheeted seriously, coarsening upward rhythm was not obvious in vertical sequence, sandbodies in the river mouth were distributed asymmetrically. Sandbodies in the upstream direction of alongslope drifting were distributed continuously and superposed of multi-layers, with good connectivity in lateral; in the downstream direction, muddy intercalations were well-developed, sandbodies were distributed isolatedly with strong heterogeneity.
-
Key words:
- alongslope current /
- downslope current /
- delta /
- sedimentary response /
- sediments /
- petroleum reservoirs /
- Daihai lacustrine basin
-
图 1 岱海湖盆区域地质与地理图
a.区域地质图(据李华章(1979)修改);b.水深与水系图(据Yu et al.(2012)修改)
Fig. 1. Regional geological and geographical maps of Daihai Lake
图 2 岱海湖盆沿坡流作用的证据
a.岱海湖盆南岸(缓坡)冲浪分析图;b.岱海湖盆南岸沙嘴现象(底图据google地图);c.岱海湖盆东岸沙嘴现象(底图据google地图).照片位置分别为图 1b中的P-A、P-B、P-C
Fig. 2. Evidences of alongslope flow process in Daihai Lake
图 4 岱海湖盆缓坡与陡坡的典型岩相组合垂向序列(图释同图 5)
a.缓坡天成河三角洲(沿坡流与顺坡流相互作用强);b.陡坡半滩子三角洲(以顺坡流作用为主)
Fig. 4. The typical vertical sequence of lithofacies associations for gentle slope and steep slope in Daihai Lake
图 5 天成河三角洲砂体对比骨架剖面
a.顺坡方向砂体对比剖面;b.沿坡方向砂体对比剖面;c.天成河三角洲平面形态及探槽分布.底图据google地图,位置见图 1b中的C框
Fig. 5. Skeleton profile of sandbody correlation in Tianchenghe delta
图 7 沿坡流与顺坡流作用强弱对河口砂体分布的影响
a.河口砂体对称分布(以顺坡流作用为主,半滩子三角洲);b.河口砂体不对称分布(沿坡流与顺坡流相互作用强,天成河三角洲);c.河口砂体不对称分布立体模式(据Bhattacharya and Giosan, 2003修改)
Fig. 7. The effects of interaction strength between alongslope- and downslope-flow on the estuarine sandbody distribution
图 8 三角洲前缘主控水动力状态分析方法(图释同图 5)
a.基于水动力条件的陆相湖盆三角洲分类;b.准噶尔盆地西山窑组露头实测岩心柱状图;W.浪控;Wf.河流影响型浪控;Fw.波浪影响型河控;F.河控;CH.水下分流河道;BS.席状砂/滩砂与湖相泥互层;MB.河口坝.河控岩相分布频率为45 m/69 m=0.71
Fig. 8. Analytical procedure for the main hydrodynamic condition of delta front
表 1 岱海湖盆南北两岸沿坡流与顺坡流相互作用强弱的控制因素对比
Table 1. Controlling factors for the interaction strength between alongslope- and downslope-flow in Daihai Lake
岸线 地形坡度(°) 河流坡降面 河流流量(m3/a) 风向 平均粒径(Φ) 主控水动力状态 南岸 2.5(相对缓) 小 4.6×106 迎风侧 2.5(相对细) 沿坡流 北岸 8(相对陡) 大 7.8×106 背风侧 1.5(相对粗) 顺坡流 表 2 岱海湖盆天成河三角洲和半滩子三角洲的岩相类型划分及成因解释
Table 2. Division of lithofacies types and its genetic interpretation for Tianchenghe delta and Bantanzi delta in Daihai Lake
岩相代码 岩相描述 岩相名称 厚度范围(cm) 成因解释 Gm 块状层理砂砾岩相 5~10 冲刷面之上的滞留沉积 St 槽状交错层理中砂岩相 5~20 分流河道下切、迁移并充填 Sp 板状交错层理中砂岩相 12~30 垂向加积或侧向加积 Sh 平行层理中细砂岩相 5~15 高流态床砂底形迁移、水浅流急 Sw 浪成波纹层理细砂岩 10~30 沿坡流(波浪)淘洗、改造而形成的席状砂或滨浅湖滩沙 Sr 流水沙纹细砂岩相 3~10 小型沙纹迁移,漫溢沉积 Fl 水平层理粉砂岩相 5~25 湖湾相对静水环境沉积 M 块状泥岩相 8~45 湖相泥质沉积 表 3 天成河三角洲与半滩子三角洲的沉积特征统计
Table 3. Statistics of sedimentary features in Tianchenghe delta and Bantanzi delta
名称 主要岩相类型 沿坡流作用标志岩相所占厚度比(%) 主要砂体类型 分流河道(CH) 河口坝(MB) 席状砂(SS) 个数 分布频率(%) 个数 分布频率(%) 个数 分布频率(%) 天成河三角洲 Sw 76.8 10 27.8 3 8.3 23 63.9 半滩子三角洲 Gm、St、Sp 14.1 16 41.0 14 35.9 8 20.5 -
[1] Ainsworth, R.B., Vakarelov, B.K., Nanson, R.A., 2011. Dynamic Spatial and Temporal Prediction of Changes in Depositional Processes on Clastic Shorelines: Toward Improved Subsurface Uncertainty Reduction and Management. AAPG Bulletin, 95(2): 267-297. doi: 10.1306/06301010036 [2] Bhattacharya, J.P., Giosan, L., 2003. Wave-Influenced Deltas: Geomorphological Implications for Facies Reconstruction. Sedimentology, 50(1): 187-210. doi: 10.1046/i.1365-3091.2003.00545.x [3] Boyer, D.L., Sous, D., Sommeria, J., 2009. Laboratory Experiments on Along-Slope Flows in Homogeneous and Stratified Rotating Fluids. Dynamics of Atmospheres and Oceans, 46(1-4): 19-35. doi: 10.1016/j.dynatmoce.2008.10.002 [4] Cao, J.T., Wang, S.M., Shen, J., et al., 2000. The Paleoclimate Changes during the Past Millennium Inferred from the Lacustrine Core in Daihai Lake, Inner Mongolia. Scientia Geographica Sinica, 20(5): 391-396(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dlkx200005001 [5] Chen, B.T., Yang, L.S., Yu, X.H., et al., 2012. Quantitative Analysis on Hydrodynamic Conditions and Sand Body Distribution Dimensions of the Braided River Delta in Sangonghe Formation and Xishanyao Formation on the South Margin of Junggar Basin. Geology in China, 39(5): 1290-1298 (in Chinese with English abstract). http://www.cqvip.com/QK/90050X/20125/43758767.html [6] Chen, B.T., Yu, X.H., Yang, L.S., et al., 2011. Research of Sedimentary Micro-facies at the Early Stage of Exploration Evaluation: Taking South Qianliyuan Area in Dongpu Depression for Example. Journal of Oil and Gas Technology, 33(8): 21-25(in Chinese with English abstract). [7] Chun, X., Chen, F.H., Fan, Y.X., et al., 2009. Evidence of Palaeolake Existence in Ulan Buh Desert and Its Environmental Evolution. Acta Geographica Sinica, 64(3): 339-348 (in Chinese with English abstract). http://www.researchgate.net/publication/287689864_Evidence_of_palaeolake_existence_in_ulan_buh_desert_and_its_environmental_evolution [8] Cunningham, M.J., Hodgson, S., Masson, D.G., et al., 2005. An Evaluation of Along- and Down-Slope Sediment Transport Processes between Goban Spur and Brenot Spur on the Celtic Margin of the Bay of Biscay. Sedimentary Geology, 179 (1-2): 99-116. doi: 10.1016/j.sedgeo.2005.04.014 [9] Gabriele, U.N., 2006. Depositional Patterns at Drift 7, Antarctic Peninsula: Along-Slope versus Down-Slope Sediment Transport as Indicators for Oceanic Currents and Climatic Conditions. Marine Geology, 233(1-4): 49-62. doi: 10.1016/j.margeo.2006.08.008 [10] Greatbatch, R., Li, G., 2000. Alongslope Mean Flow and an Associated Upslope Bolus Flux of Tracer in a Parameterization of Mesoscale Turbulence. Deep Sea Research I: Oceanographic Research Papers, 47(4): 709-735. doi: 10.1016/s0967-0637(99)00078-3 [11] Komar, P.D., 1973. Computer Models of Delta Growth due to Sediment Input from Rivers and Longshore Transport. Geological Society of America Bulletin, 84(7): 2217-2226. doi: 10.1130/0016-7606(1973)84<2217:CMODGD>2.0.CO;2 [12] Laberg, J.S., Martyn, S., Stoker, K.I., et al., 2005. Cenozoic Alongslope Processes and Sedimentation on the NW European Atlantic Margin. Marine and Petroleum Geology, 22(9-10): 1069-1088. doi: 10.1016/j.marpetgeo.2005.01.008 [13] Li, H.Z., 1979. Formation of Daihai Lake and Its Topographical Features. Journal of Beijing Normal University (Natural Science), 24(1): 98-110 (in Chinese). [14] Miall, A.D., 1990. Principles of Sedimentary Basin Analysis. Springer-Verlag, New York, 155-170. [15] Schwartz, R.K., 1982. Bedform and Stratification Characteristics of Some Modern Small-Scale Washover Sand Bodies. Sedimentology, 29(6): 835-849. doi: 10.1111/j.1365-3091.1982.tb00087.x [16] Schwehr, K., Driscoll, N., Tauxe, L., 2007. Origin of Continental Margin Morphology: Submarine-Slide or Downslope Current-Controlled Bedforms, a Rock Magnetic Approach. Marine Geology, 240(1-4): 19-41. doi: 10.1016/j.margeo.2007.01.012 [17] Song, C.H., Fang, X.M., Shi, Y.M., et al., 2001. Sedimentary Characteristics of Modern Lacustrine Deltas in Qinghai Lake and Their Controlling Factors. Journal of Lanzhou University (Natural Sciences), 37(3): 112-120(in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=5412320 [18] Wang, H.J., Jiang, J.H., Li, X.G., 2006. Study on Changes of Lake Shoreline Morphology in Daihai Lake. Resources and Environment in the Yangtze Basin, 15(5): 674-677(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJLY200605029.htm [19] Wang, J.H., Chen, H.H., Jiang, T., et al., 2012a. Sandbodies Frameworks of Subaqueous Distributary Channel in Shallow-Water Delta, Xinli Area of Songliao Basin. Earth Science—Journal of China University of Geosciences, 37(3): 556-564(in Chinese with English abstract). doi: 10.3799/dqkx.2012.062 [20] Wang, J.H., Chen, H.H., Yun, L., et al., 2012b. Tectonic Responses of Triassic Sequence Stratigraphy in the Large-Scale Compressional Down-Warped Lacustrine Basin of Inner Tarim Basin. Earth Science—Journal of China University of Geosciences, 37(4): 735-742(in Chinese with English abstract). doi: 10.3799/dqkx.2012.082 [21] Wang, S.M., Feng, M., 1991. The Relationship between Environmental Change and the Southeast Monsoon Changes in Daihai Lake, Inner Mongolia. Science in China (Ser. B), 21(7): 759-768 (in Chinese). [22] Wang, Y.H., Zhuang, Z.Y., Li, X.L., 2000. The Calculation of Alongshore Silt Discharge Rates and Evolution Development of Sandspit in the Rongcheng Bay, Shandong Peninsula. Marine Geology & Quaternary Geology, 20(4): 31-35(in Chinese with English abstract). http://www.researchgate.net/publication/285021316_The_calculation_of_alongshore_silt_discharge_rates_and_evolution_development_of_sandspit_in_the_Rongcheng_Bay_Shandong_Peninsula [23] Xiao, J.L., Si, B., Zhai, D.Y., et al., 2008. Hydrology of Dali Lake in Central-Eastern Inner Mongolia and Holocene East Asian Monsoon Variability. Journal of Paleolimnology, 40(1): 519-528. doi: 10.1007/s10933-007-9179-x [24] Yu, X.H., 2012. Existing Problems and Sedimentogenesis-Based Methods of Reservoir Characterization during the Middle and Later Periods of Oilfield Development. Earth Science Frontiers, 19(2): 1-14 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201202002 [25] Yu, X.H., Li, S.L., Chen, B.T., et al., 2012. Interaction between Downslope and Alongslope Processes on the Margins of Daihai Lake, North China: Implication for Deltaic Sedimentation Models of Lacustrine Rift Basin. Acta Geologica Sinica (English Edition), 86(4): 932-948. doi: 10.1111/j.1755-6724.2012.00718.x [26] Yu, X.H., Wang, D.F., Zheng, J.M., et al., 1994.3-D Extension Models of Braided Deltaic Sandbody in Terrestrial Facies—An Observation on Deposition of Modern Deltas in Daihai Lake, Inner Mongolia. Acta Petrolei Sinica, 15(1): 26-37(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB401.003.htm [27] Zhu, X.M., Liu, Y., Fang, Q., et al., 2012. Formation and Sedimentary Model of Shallow Delta in Large-Scale Lake: Example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin. Earth Science Frontiers, 19(1): 89-99(in Chinese with English abstract). http://www.researchgate.net/publication/288555106_Formation_and_sedimentary_model_of_shallow_delta_in_large-scale_lake_Example_from_Cretaceous_Quantou_Formation_in_Sanzhao_Sag_Songliao_Basin [28] Zou, C.N., Zhao, W.Z., Zhang, X.Y., et al., 2008. Formation and Distribution of Shallow-Water Deltas and Central-Basin Sandbodies in Large Open Depression Lake Basins. Acta Geologica Sinica, 82(6): 813-825(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200806012.htm [29] 曹建廷, 王苏民, 沈吉, 等, 2000. 近千年来内蒙古岱海气候环境演变的湖泊沉积记录. 地理科学, 20(5): 391-396. doi: 10.3969/j.issn.1000-0690.2000.05.001 [30] 陈彬滔, 杨丽莎, 于兴河, 等, 2012. 准噶尔盆地南缘三工河组和西山窑组辫状河三角洲水动力条件与砂体分布规模定量分析. 中国地质, 39(5): 1290-1298. doi: 10.3969/j.issn.1000-3657.2012.05.016 [31] 陈彬滔, 于兴河, 杨丽莎, 等, 2011. 勘探评价早期阶段沉积微相研究方法探讨——以东濮凹陷前梨园南地区为例. 石油天然气学报, 33(8): 21-25. doi: 10.3969/j.issn.1000-9752.2011.08.005 [32] 春喜, 陈发虎, 范育新, 等, 2009. 乌兰布和沙漠腹地古湖存在的沙嘴证据及环境意义. 地理学报, 64(3): 339-348. doi: 10.3321/j.issn:0375-5444.2009.03.009 [33] 李华章, 1979. 岱海湖盆的形成及地貌发育特征. 北京师范大学学报(自然科学版), 24(1): 98-110. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ197901012.htm [34] 宋春晖, 方小敏, 师永民, 等, 2001. 青海湖现代三角洲沉积特征及形成控制因素. 兰州大学学报(自然科学版), 37(3): 112-120. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200103022.htm [35] 王红娟, 姜加虎, 李新国, 2006. 岱海湖泊岸线形态变化研究. 长江流域资源与环境, 15(5): 674-677. doi: 10.3969/j.issn.1004-8227.2006.05.030 [36] 王家豪, 陈红汉, 江涛, 等, 2012a. 松辽盆地新立地区浅水三角洲水下分流河道砂体结构解剖. 地球科学——中国地质大学学报, 37(3): 556-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203019.htm [37] 王家豪, 陈红汉, 云露, 等, 2012b. 塔里木盆地台盆区三叠纪大型挤压坳陷湖盆层序地层及构造响应. 地球科学——中国地质大学学报, 37(4): 735-742. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204013.htm [38] 王苏民, 冯敏, 1991. 内蒙古岱海湖泊环境变化与东南季风强弱变化的关系. 中国科学(B辑), 21(7): 759-768. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199107012.htm [39] 王永红, 庄振业, 李学伦, 2000. 山东荣成湾沿岸输沙率及沙嘴的演化动态. 海洋地质与第四纪地质, 20(4): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200004007.htm [40] 于兴河, 2012. 油田开发中后期储层面临的问题与基于沉积成因的地质表征方法. 地学前缘, 19(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202003.htm [41] 于兴河, 王德发, 郑浚茂, 等, 1994. 辫状河三角洲砂体特征及砂体展布模型——内蒙古岱海湖现代三角洲沉积考察. 石油学报, 1994, 15(1): 26-37. doi: 10.3321/j.issn:0253-2697.1994.01.012 [42] 朱筱敏, 刘媛, 方庆, 等, 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201012.htm [43] 邹才能, 赵文智, 张兴阳, 等, 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200806012.htm