• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    混沌序列WA-VOLTERRA耦合模型在月降水量预测中的应用

    黄发明 田玉刚

    黄发明, 田玉刚, 2014. 混沌序列WA-VOLTERRA耦合模型在月降水量预测中的应用. 地球科学, 39(3): 368-374. doi: 10.3799/dqkx.2014.035
    引用本文: 黄发明, 田玉刚, 2014. 混沌序列WA-VOLTERRA耦合模型在月降水量预测中的应用. 地球科学, 39(3): 368-374. doi: 10.3799/dqkx.2014.035
    Huang Faming, Tian Yugang, 2014. WA-VOLTERRA Coupling Model Based on Chaos Theory for Monthly Precipitation Forecasting. Earth Science, 39(3): 368-374. doi: 10.3799/dqkx.2014.035
    Citation: Huang Faming, Tian Yugang, 2014. WA-VOLTERRA Coupling Model Based on Chaos Theory for Monthly Precipitation Forecasting. Earth Science, 39(3): 368-374. doi: 10.3799/dqkx.2014.035

    混沌序列WA-VOLTERRA耦合模型在月降水量预测中的应用

    doi: 10.3799/dqkx.2014.035
    基金项目: 

    国家自然科学基金项目 40801213

    详细信息
      作者简介:

      黄发明(1988-), 男, 硕士研究生, 研究方向为灾害评估.E-mail: huang1503518@sina.cn

      通讯作者:

      田玉刚, E-mail: ygangtian@163.com

    • 中图分类号: P91

    WA-VOLTERRA Coupling Model Based on Chaos Theory for Monthly Precipitation Forecasting

    • 摘要: 由于月降水量时间序列含有大量噪声, 并表现出明显的混沌特性, 现有预测模型均存在一定程度的不足.基于混沌理论的小波分析-VOLTERRA级数自适应(WA-VOLTERRA)耦合预测模型, 在对月降水量时间序列进行混沌特性识别的基础上, 先用小波分析对月降水序列进行时频分解, 再分别对各频率分量进行相空间重构并用3阶VOLTERRA级数自适应模型建模预测, 最后综合得到原始序列的预测值.以相近区域杭州市和南通市的月降水序列为例, 并通过与小波分析-支持向量机(WA-SVM)模型进行比较, 发现该模型具有较强的适用性和更高的预测精度.

       

    • 图  1  WA-VOLTERRA自适应耦合预测模型示意图

      Fig.  1.  The diagram of WA-VOLTERRA adaptive coupling forecast model

      图  2  杭州市月降水序列log2(r)-log2c(r)关系

      Fig.  2.  Relational curves of log2(r)-log2c(r) for monthly precipitation series of Hangzhou

      图  3  杭州市月降水序列饱和关联维图

      Fig.  3.  Relational curves of saturation correlation dimension for monthly precipitation series of Hangzhou

      图  4  小数据量法计算得到的Lyapunov值

      Fig.  4.  The calculation chart of Lyapunov value

      图  5  小波分解后的各个分量序列

      Fig.  5.  Wavelet decomposition of the monthly precipitation of Hangzhou City

      图  6  杭州市月降水量预测值与实测值对比

      Fig.  6.  One month ahead precipitation forecasts using WA-VOLTERRA model and WA-SVM model of Hangzhou

      图  7  南通市月降雨量模型预测值与真实值对比

      Fig.  7.  The comparison of Nantong monthly precipitation predicted and measured values

      表  1  杭州市月降水量预测结果对比

      Table  1.   Comparison of different models for 1 month ahead precipitation forecasting at Hangzhou

      模型 RMSE MAPE(%)
      WA-VOLTERRA 22.9 24.5
      WA-SVM 28.2 30.1
      下载: 导出CSV

      表  2  南通市模型预测结果对比

      Table  2.   Comparison of different models for 1 month ahead precipitation forecasting at Nantong

      模型 RMSE MAPE(%)
      WA-VOLTERRA 16.9 31.8
      WA-SVM 24.9 36.9
      下载: 导出CSV
    • [1] Chen, C.J., Ni, C.J., 2011. Testing for Nonlinearity in Time Series of Monthly Precipitation in Panxi Region. Plateau and Mountain Meteorology Research, 31(2): 26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCCX201102004.htm
      [2] Gao, R., Liu, X.H., 2005. Short-Term Load Forecasting Method Based on Support Vector Machine Combined with Wavelet Transform. Journal of Shandong University (Engineering Science), 35(3): 115-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WJSY200504017.htm
      [3] Han, M., 2007. Prediction Theory and Method of Chaotic Time Series. China Water & Power Press, Beijing, 28-30 (in Chinese).
      [4] Lai, Y.C., Lerner, D., 1998. Effective Scaling Regime for Computing the Correlation Dimension from Chaotic Time Series. Physics D, 115(1-2): 1-18. doi: 10.1016/S0167-2789(97)00230-3
      [5] Li, H.X., Xu, S.G., Fan, C.R., 2007. Identification of Chaos of Monthly Runoff and Prediction of Runoff Time Series Using Volterra Adaptive Method. Journal of Hydraulic Engineering, 38(6): 760-766 (in Chinese with English abstract).
      [6] Liang, J., Zeng, G.M., Guo, S.L., et al., 2006. Diagnosis of Chaotic Behavior and Forecast Resouces for Monthly Rainfall in Dongting Lake Area. Water Resources and Power, 24(5): 16-19 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_sdnykx200605005.aspx
      [7] Ma, X.X., Mu, H.Z., Guo, H.F., 2008. Reservoir Monthly Runoff Forecast Model Based on Wavelet-ANFIS Analysis. Water Resources and Power, 26(1): 26-29 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SDNY200801008&dbcode=CJFD&year=2008&dflag=pdfdown
      [8] Sivakumer, B., 2004. Chaos Theory in Geophysics: Past, Present and Future. Chaos, Solitons and Fractals, 19(22): 441-462. doi: 10.1016/S0960-0779(03)00055-9
      [9] Sivakumar, B., Berndtsson, R., Olsson, J., et al., 2001. Evidence of Chaos in Rainfall-Runoff Process. Hydrology Science, 46(1): 131-145. doi: 10.1080/02626660109492805
      [10] Sivakumar, B., Jayawardena, A.W., Fernando, T., 2002. River Flow Forecasting: Use of Phase-Space Reconstruction and Artificial Neural Networks Approaches. Journal of Hydrology, 265(1-4): 225-245. doi: 10.1016/S0022-1694(02)00112-9
      [11] Song, X.Y., Zhang, G.D., 2007. Basin Rainfall Series Forecast Based on WA-SVM Combined Model. Journal of Yangtze River Scientific Research Institute, 24(5): 23-26 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=25715296
      [12] Vallejos, R.O., Anteneodo, C., 2002. Theoretical Estimates for the Largest Lyapunov Exponent of Many-Particle Systems. Physical Review E, 66(2): 1203-1218. doi: 10.1103/PhysRevE.66.021110
      [13] Wang, D.Z., Xia, J., Zhang, L.P., 2002. Chaos Analysis of Monthly Precipitation Time Series in North-East China Area. International Journal Hydroelectric Energy, 20(3): 32-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDNY200203010.htm
      [14] Wang, H.R., Song, Y., Liu, C.M., et al., 2004. Application and Issues of Chaos Theory in Hydroscience. Advances in Water Science, 15(3): 400-407 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200403025.htm
      [15] Wei, B.L., Luo, X.S., Wang, B.H., et al., 2002. A Method Based on the Third-Order Volterra Filter for Adaptive Predictions of Chaotic Time Series. Acta Physica Sinica, 51(10): 2205-2210 (in Chinese with English abstract). doi: 10.7498/aps.51.2205
      [16] Yang, Y.G., Chen, Y.H., 2009. Chaotic Characteristics and Prediction for Water Inrush in Mine. Earth Science—Journal of China University of Geosciences, 34(2): 258-262 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.024
      [17] You, R.Y., Chen, Z., Xu, S.C., et al., 2004. Study on Phase-Space Reconstruction of Chaotic Signal Based on Wavelet Transform. Acta Physica Sinica, 53(9): 2882-2888 (in Chinese with English abstract). doi: 10.7498/aps.53.2882
      [18] Yu, G.R., Xia, Z.Q., 2008. Prediction Model of Chaotic Time Series Based on Support Vector Machine and Its Application to Runoff. Advances in Water Science, 19(1): 116-122 (in Chinese with English abstract). http://www.researchgate.net/publication/279617604_Prediction_model_of_chaotic_time_series_based_on_support_vector_machine_and_its_application_to_runoff
      [19] Zhang, J.S., Xiao, X.C., 2000. Predicting Low-Dimensional Chaotic Time Series Using Volterra Adaptive Filers. Acta Physica Sinica, 49(3): 403-408 (in Chinese with English abstract). doi: 10.7498/aps.49.403
      [20] 陈超君, 倪长健, 2011. 攀西地区月降水时序非线性特性分析. 高原山地气象研究, 31(2): 26-30. doi: 10.3969/j.issn.1674-2184.2011.02.004
      [21] 高荣, 刘晓华, 2005. 基于小波变换的支持向量机短期负荷预测. 山东大学学报(工学版), 35(3): 115-118. doi: 10.3969/j.issn.1672-3961.2005.03.027
      [22] 韩敏, 2007. 混沌时间序列预测理论与方法. 北京: 中国水利水电出版社, 28-30.
      [23] 李红霞, 许士国, 范垂仁, 2007. 月径流序列的混沌特征识别及Volterra自适应预测法的应用. 水利学报, 38(6): 760-766. doi: 10.3321/j.issn:0559-9350.2007.06.019
      [24] 梁婕, 曾光明, 郭生练, 等, 2006. 洞庭湖区月降雨序列的混沌特性识别及预测研究. 水电能源科学, 24(5): 16-19. doi: 10.3969/j.issn.1000-7709.2006.05.005
      [25] 马细霞, 穆浩泽, 郭慧芳, 2008. 基于小波-ANFIS的水库月径流预报模型. 水电能源科学, 26(1): 26-29. doi: 10.3969/j.issn.1000-7709.2008.01.007
      [26] 宋星原, 张国栋, 2007. 基于WA-SVM组合模型的流域月降雨量预测研究. 长江科学院院报, 24(5): 23-26. doi: 10.3969/j.issn.1001-5485.2007.05.007
      [27] 王德智, 夏军, 张利平, 2002. 东北地区月降雨时间序列的混沌特性研究. 水电能源科学, 20(3): 32-34. doi: 10.3969/j.issn.1000-7709.2002.03.011
      [28] 王红瑞, 宋宇, 刘昌明, 等, 2004. 混沌理论及在水科学中的应用与存在的问题. 水科学进展, 15(3): 400-407. doi: 10.3321/j.issn:1001-6791.2004.03.025
      [29] 韦保林, 罗晓曙, 汪秉宏, 等, 2002. 一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法. 物理学报, 51(10): 2205-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200210006.htm
      [30] 杨永国, 陈玉华, 2009. 矿井涌水量混沌特征与预测. 地球科学——中国地质大学学报, 34(2): 258-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902004.htm
      [31] 游荣义, 陈忠, 徐慎初, 等, 2004. 基于小波变换的混沌信号相空间重构研究. 物理学报, 53(9): 2882-2888. doi: 10.3321/j.issn:1000-3290.2004.09.014
      [32] 于国荣, 夏自强, 2008. 混沌时间序列支持向量机模型及其在径流预测中应用. 水科学进展, 19(1): 116-122. doi: 10.3321/j.issn:1001-6791.2008.01.020
      [33] 张家树, 肖先赐, 2000. 混沌时间序列的Volterra自适应预测. 物理学报, 49(3): 403-408. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200003003.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  3038
    • HTML全文浏览量:  180
    • PDF下载量:  421
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-09-26
    • 刊出日期:  2014-03-15

    目录

      /

      返回文章
      返回