Characteristics and Formation Mechanism of Mesozoic Underpressured Reservoirs in Ordos Basin
-
摘要: 首次对鄂尔多斯盆地中生界油藏压力进行了研究, 发现中生界油藏主要为超低压油藏, 并且不同地区和不同层位油藏的异常低压差别显著.研究结果表明, 随着地层剥蚀厚度增大和油藏抬升后温度降低值增加, 储层压力系数呈减少趋势; 延长组油藏抬升温度降低后使储层孔隙水的体积收缩量达0.82%~1.94%.这些指示了盆地在白垩纪末期长时间强烈抬升, 地层剥蚀和古地温降低作用是形成低压油藏的主要原因.认为鄂尔多斯盆地中生界这种低压封闭体系对油藏的保存有利, 同时对油藏调整、油气运移再富集和油水分布等成藏方面可能起到了重要作用.提出了陕北地区长6低压油藏由东南向西北方向富集和长7砂岩透镜体不含水低压油气藏形成, 均与这种低压封闭体系分布密切相关.Abstract: The pressure characteristics of Mesozoic oil reservoirs in Ordos Basin was studied for the first time. It is found that the Mesozoic oil reservoirs are mainly ultra-underpressured ones and the abnormal underpressure difference in oil reservoirs among different regions and different layers is distinct. The results show that oil reservoir pressure coefficients exhibit a decreasing trend with the increase of eroded strata thickness and temperature drop value of oil reservoirs after, and the reservoir porewater volume contraction amounts to 0.82%-1.94% as a result of temperature drop after uplift of Yanchang Formation oil reservoirs, which indicates that the function of strata erosion and paleotemperature decrease due to long time and strong uplift of the basin at the end of the Cretaceous result in the formation of underpressured oil reservoirs. The underpressured closed system of Mesozoic in the Ordos Basin is believed to be advantageous for oil reservoir preservation and may have played an important role in oil reservoir adjustment, re-enrichment of hydrocarbon by migration and oil and water distribution in oil reservoirs. It is concluded that Chang-6 underpressured reservoir enriched from the southeast to the northwest in the North Shaanxi area and presence of Chang-7 lenticular sandstone body reservoirs with absence of water are closely related to the distribution of such underpressured closed systems.
-
Key words:
- underpressured oil reservoir /
- formation mechanism /
- oil bearing formation /
- lenses /
- Mesozoic /
- Ordos Basin
-
表 1 鄂尔多斯盆地中生界油藏储层平均压力系数
Table 1. Mean pressure coefficients of Mesozoic reservoir rocks
层位 马岭 姬塬 华庆 西峰 吴旗 陕北 平均值 延10 0.93(1) 0.93(1) 延安组 0.80(4) 0.80(4) 长1 0.70(1) 0.86(1) 0.65(1) 0.74(3) 长2 0.75(7) 0.81(5) 0.83(3) 0.71(4) 0.77(14) 长3 0.71(16) 0.74(2) 0.71(18) 长4+5 0.67(7) 0.69(2) 0.84(2) 0.72(11) 长6 0.63(8) 0.69(5) 0.71(35) 0.70(48) 长7 0.83(2) 0.70(1) 长8 0.74(10) 0.76(16) 0.75(26) 长9 0.75(1) 0.75(1) 长10 0.79(1) 0.79(1) 注:括号内数字为样品数;压力系数资料来自长庆油田,为实测数据. 表 2 m*值分布
Table 2. Distribution of m* values
古峰庄 姬塬 白豹 西峰 洛川 最大埋深(m) 3 015 3 150 3 300 3 000 3 015 最大剥蚀厚度(m) 630 600 1 100 630 1 500 最大残余厚度(m) 2 385 2 550 2 200 2 370 1 515 最大剥蚀时m* 0.042 0.044 0.057 0.042 0.040 表 3 长7烃源岩最大古地温和延长组油藏二期成藏古地温
Table 3. The max paleogeothermal for Chang-7 source rocks and paleotempeature of the second stage of Yanchang Formation reservoir forming
古峰庄 姬塬 白豹 西峰 洛川 早白垩世长7烃源岩最大埋深(m) 2 800 2 850 2 950 2 300 2 000 长7烃源岩生烃最大古地温(℃) 130 125 130 110 100 二期成藏古温度(℃) 110 110 110 100 100 注:长7烃源岩生烃最大古地温根据地层埋藏史和热演化史研究所获得;二期成藏古温度为储层包裹体均一温度. 表 4 鄂尔多斯盆地延长组各油层组油藏现今平均温度(℃)
Table 4. Average current temperature of Yanchang Formation (℃)
层位 姬塬 华庆 西峰 吴旗 陕北 长1 61.6(1) 38.6(3) 长2 62.9(6) 51.5(6) 47.6(2) 31.5(14) 长3 57.0(12) 长4+5 69.9(5) 60.9(2) 44.8(4) 长6 62.7(5) 57.5(7) 45.6(56) 长7 59.6(1) 长8 63.5(8) 66.1(11) 长10 平均 64.8 58.3 66.1 52.6 40.1 △T 45.2 51.7 33.9 59.9 注:括号内数字为样品数;△T为成藏二期成藏温度与现今油藏平均温度之差,即油藏抬升后平均降低温度. 表 5 鄂尔多斯盆地延长组油藏储层孔隙水体积收缩百分含量(%)
Table 5. Pore volume shrinkage percentage contents for Yanchang Formation (%)
层位 姬塬 华庆 西峰 陕北 长2 1.49 1.94 1.47 长3 长4+5 1.13 1.59 长6 1.28 1.21 长8 1.33 0.82 -
[1] Chen, H.L., Tang, X.Y., 1983. A Discussion on the Compaction of Argillaceous Rocks and Primary Migration of Oil and Gas in Dongying Sag of Shandong Province. Acta Petrolei Sinica, 4(2): 9-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB198302001.htm [2] Corbet, T.F., Bethke, C.M., 1992. Disequilibrium Fluid Pressures and Groundwater Flow in the Eastern Canada Sedimentary Basin. Journal of Geophysical Research, 97(B5): 7203-7217. doi: 10.1029/91JB02993 [3] Du, X., Zheng, H.Y., Jiao, X.Q., 1995. Abnormal Pressure and Hydrocarbon Accumulation. Earth Science Frontiers, 2(3-4): 137-148 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY504.001.htm [4] Duan, Y., Wang, C.Y., Zheng, C.Y., et al., 2008. Geochemical Study of Crude Oils from Xifeng Oilfield of Ordos Basin. Journal of Asian Earth Sciences, 31(4-6): 341-356. doi: org/ 10.1016/j.jseaes.2007.05.003 [5] Duan, Y., Wu, B.X., Zheng, C.Y., et al., 2005. Pool-Forming Dynamic Properties of Xifeng Oilfield in Ordos Basin. Acta Petrolei Sinica, 26(4): 29-33 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/syxb200504006 [6] Fatt, I., 1958. Compressibility of Sandstones at Low to Moderate Pressure. American Association of Petroleum Geologists Bulletin, 42(12): 1924-1957. [7] Hao, F., Dong, W.L., Zou, H.Y., et al., 2003. Overpressure Fluid Flow and Rapid Accumulation of Natural Gas in Yinggehai Basin. Acta Petrolei Sinica, 24(6): 7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200306002.htm [8] Hodgman, C.D., 1957. Handbook of Chemistry and Physics. Chemical Rubber Publishing Corporation, Cleveland, Ohio, 3213. [9] Hui, X., Tian, Y.Q., 2008. Hydrogeologic Features and Enrichment Laws of Oil Reservoirs in South Tianhuan Depression, Ordos Basin. Journal of Earth Sciences and Environment, 30(3): 278-282 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200803010.htm [10] Jiang, Z.X., Pang, X.Q., Jin, Z.J., et al., 2004. Relationship between Pore Variation of Reservoir and Rebounding of Sandstone during Uplift and Its Application to the Daqing Oilfield. Earth Science—Journal of China University of Geosciences, 29(4): 420-426 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200404007 [11] Li, J.T., Zeng, J.H., Wu, J.P., 2011. Application of Typical Profile to Analysis of Reservoir Pressure Evolution and Hydrocarbon Accumulation in Dongying Sag. Lithologic Reservoirs, 23(4): 58-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX201104013.htm [12] Liu, J.F., Duan, Y., Liu, Y.C., et al., 2011. Formation Conditions and Mechanism of Oil Reservoir in Maling Oilfield, Ordos Basin. Acta Sedimentologica Sinica, 29(2): 410-416 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-sedimentologica-sinica_thesis/0201251734263.html [13] Liu, X.F., Xie, X.N., 2002. Origin and Characteristics of under Pressure Systems in Dongying Depression. Oil & Gas Geology, 23(1): 66-69 (in Chinese with English abstract). http://www.researchgate.net/publication/284099739_Origin_and_characteristics_of_under_pressure_systems_in_Dongying_depression [14] McLatchie, A.S., Hemstock, R.A., Young, J.W., 1958. The Effective Compressibility of Reservoir Rock and Its Effect on Permeability. Journal of Petroleum Technology, 10(6): 49-51. doi: 10.2118/894-G [15] Neuzil, C.E., 1986. Groundwater Flow in Low-Permeability Environments. Water Resources Research, 22(8): 1163-1195. doi: 10.1029/WR022i008p01163 [16] Neuzil, C.E., 1993. Low Fluid Pressure within the Pierre Shale: A Transient Response to Erosion. Water Resources Research, 29(6): 2007-2020. doi: 10.1029/93WR00406 [17] Tian, F.H., Jiang, Z.X., Zhang, X.B., et al., 2007. Preliminary Study on Contribution of Rift-Erosion to Oil and Gas Accumulation. Acta Geologica Sinica, 81(2): 273-279 (in Chinese with English abstract). http://www.researchgate.net/publication/279573117_Preliminary_study_on_contribution_of_rift-erosion_to_oil_and_gas_accumulation [18] Toth, J., Corbet, T., 1986. Post-Paleocene Evolution of Regional Groundwater Flow-Systems and Their Relation to Petroleum Accumulations, Taber Area, Southern Alberta, Canada. Bulletin of Canadian Petroleum Geology, 34(3): 339-363. http://www.researchgate.net/publication/335339608_Post-Paleocene_evolution_of_regional_groundwater_flow_systems_and_their_relation_to_petroleum_accumulations_Taber_area_Southern_Alberta_Canada [19] Wang, Z.L., Li, J., Lin, S.G., et al., 2009. Forming Mechanism and Distribution of Low Pressure Reservoirs in Southeast Uplift of Southern Songliao Basin. Natural Gas Geoscience, 20(2): 216-221 (in Chinese with English abstract). http://www.oalib.com/paper/1418216 [20] Xia, X.Y., Song, Y., 2001. Temperature Effects on Geopressure during Deposition and Erosion. Petroleum Exploration and Development, 28(3): 8-13 (in Chinese with English abstract). http://www.researchgate.net/publication/295188710_Temperature_effects_on_geopressure_during_deposition_and_erosion?_sg=UkJ2fE_M6tUPVCV8GgMgb0UqtoD2IHWNQ_MrOynLXhPc32jS6fc1jvuhCXYHYsfyDPdNiXO8AlgEb67_n5l9sDIKr4QHp4hvT_Y9a6Wrq6s [21] Xu, H., Zhang, J.F., Tang, D.Z., et al., 2009. The Study Status and Tendency of Low Pressure. Advances in Earth Science, 24(5): 506-511 (in Chinese with English abstract). [22] Zhang, X.L., 1999. Characteristics of Low Resistivity Oil Reservoir in Yanchang Formation of Shanbei Triassic System and Its Origin. Well Logging Technology, 23(4): 276-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS904.010.htm [23] Zou, H.Y., Hao, F., Cai, X.Y., 2003. Summarization of Subnormal Pressures and Accumulation Mechanisms of Subnormally Pressured Petroleum Reservoirs. Geological Science and Technology Information, 22(2): 45-50 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200302010.htm [24] 陈荷立, 汤锡元, 1983. 山东东营凹陷泥岩压实作用及油气初次运移问题探讨. 石油学报, 4(2): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198302001.htm [25] 杜栩, 郑洪印, 焦秀琼, 1995. 异常压力与油气分布. 地学前缘, 2(3-4): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY504.001.htm [26] 段毅, 吴保祥, 郑朝阳, 等, 2005. 鄂尔多斯盆地西峰油田油气成藏动力学特征. 石油学报, 26(4): 29-33. doi: 10.3321/j.issn:0253-2697.2005.04.006 [27] 郝芳, 董伟良, 邹华耀, 等, 2003. 莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏. 石油学报, 24(6): 7-12. doi: 10.3321/j.issn:0253-2697.2003.06.002 [28] 惠潇, 田永强, 2008. 鄂尔多斯盆地天环拗陷南段水文地质特征与油藏富集规律. 地球科学与环境学报, 30(3): 278-282. doi: 10.3969/j.issn.1672-6561.2008.03.009 [29] 姜振学, 庞雄奇, 金之钧, 等, 2004. 地层抬升过程中的砂体回弹作用及其油气成藏效应. 地球科学——中国地质大学学报, 29(4): 420-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200404006.htm [30] 李继亭, 曾溅辉, 吴嘉鹏, 2011. 利用东营凹陷典型剖面分析地层压力演化与油气成藏关系. 岩性油气藏, 23(4): 58-64. doi: 10.3969/j.issn.1673-8926.2011.04.011 [31] 刘军锋, 段毅, 刘一仓, 等, 2011. 鄂尔多斯盆地马岭油田成藏条件与机制. 沉积学报, 29(2): 410-416. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201102025.htm [32] 刘晓峰, 解习农, 2002. 东营凹陷低压系统的特征及成因机制. 石油与天然气地质, 23(1): 66-69. doi: 10.3321/j.issn:0253-9985.2002.01.014 [33] 田丰华, 姜振学, 张晓波, 等, 2007. 地层抬升剥蚀对油气成藏贡献初探. 地质学报, 81(2): 273-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702019.htm [34] 王宗礼, 李君, 林世国, 等, 2009. 松辽盆地南部东南隆起区低压油气藏形成机制及分布特征研究. 天然气地球科学, 20(2): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200902010.htm [35] 夏新宇, 宋岩, 2001. 沉降及抬升过程中温度对流体压力的影响. 石油勘探与开发, 28(3): 8-13. doi: 10.3321/j.issn:1000-0747.2001.03.003 [36] 许浩, 张君峰, 汤达祯, 等, 2009. 低压油气藏形成机制研究现状及发展趋势. 地球科学进展, 24(5): 506-511. doi: 10.3321/j.issn:1001-8166.2009.05.006 [37] 张小莉, 1999. 陕北三叠系延长组低阻油层特性及其形成机理分析. 测井技术, 23(4): 276-287. doi: 10.3969/j.issn.1004-1338.1999.04.008 [38] 邹华耀, 郝芳, 蔡勋育, 2003. 沉积盆地异常低压与低压油气藏成藏机理综述. 地质科技情报, 22(2): 45-50. doi: 10.3969/j.issn.1000-7849.2003.02.010