• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    松辽盆地嫩江组油页岩发育控制因素

    贾建亮 刘招君 AchimBechtel ReinhardF.Sachsenhofer 孙平昌 SusanneA.I.Strobl

    贾建亮, 刘招君, AchimBechtel, ReinhardF.Sachsenhofer, 孙平昌, SusanneA.I.Strobl, 2014. 松辽盆地嫩江组油页岩发育控制因素. 地球科学, 39(2): 174-186. doi: 10.3799/dqkx.2014.017
    引用本文: 贾建亮, 刘招君, AchimBechtel, ReinhardF.Sachsenhofer, 孙平昌, SusanneA.I.Strobl, 2014. 松辽盆地嫩江组油页岩发育控制因素. 地球科学, 39(2): 174-186. doi: 10.3799/dqkx.2014.017
    Jia Jianliang, Liu Zhaojun, Achim Bechtel, Reinhard F.Sachsenhofer, Sun Pingchang, Susanne A.I.Strobl, 2014. Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin. Earth Science, 39(2): 174-186. doi: 10.3799/dqkx.2014.017
    Citation: Jia Jianliang, Liu Zhaojun, Achim Bechtel, Reinhard F.Sachsenhofer, Sun Pingchang, Susanne A.I.Strobl, 2014. Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin. Earth Science, 39(2): 174-186. doi: 10.3799/dqkx.2014.017

    松辽盆地嫩江组油页岩发育控制因素

    doi: 10.3799/dqkx.2014.017
    基金项目: 

    中国地质科学院中央级公益性基本业务费专项基金项目 J1220

    国家自然科学基金项目 40972076

    详细信息
      作者简介:

      贾建亮(1982-), 男, 助理研究员, 博士, 主要从事石油地质学、沉积地球化学研究.E-mail: jiajl0228@163.com

    • 中图分类号: P595

    Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin

    • 摘要: 松辽盆地嫩江组一段和二段发育的油页岩是极其优质烃源岩, 生物标志化合物参数指示油页岩母质生源主要来自于水生生物其繁盛受温湿气候和湖泊富营养化控制.岩石学、元素地球化学、生物标志化合物等参数表明, 高盐和缺氧条件下的稳定水体分层是嫩一段油页岩沉积时期有机质保存的主控因素, 而嫩二段油页岩沉积时期水体盐度分层明显减弱, 此时藻类个体增大和孤立藻数量增多条件下的高生物生产力有利于有机质富集.为揭示嫩江组不同沉积环境下油页岩发育的控制因素, 建立了嫩一段油页岩沉积时期保存条件控制和嫩二段油页岩沉积时期生物生产力控制的两种有机质富集模式, 这对含氧淡水大型陆相湖泊的有机质富集成因探讨具有重要借鉴意义.

       

    • 图  1  嫩江组Zk3389井岩性剖面及沉积相分布

      Fig.  1.  Lithologic profile of Well Zk3389 and areal distribution of sedimentary facies from the Nenjiang Formation

      图  2  嫩江组有机质类型交会

      Fig.  2.  Cross plot of kerogen types in the Nenjiang Formation

      图  3  嫩江组油页岩饱和烃质量色谱图(GC-MS)

      Fig.  3.  Mass chromatograms of oil shale in the Nenjiang Formation

      图  4  嫩江组油页岩反射荧光显微照片

      有机显微组分主要包括代表水生低等植物的层状藻和结构藻及代表陆源高等植物的镜质体、孢子体和惰质体

      Fig.  4.  Maceral photographs of oil shales from the Nenjiang Formation

      图  5  嫩江组MTTC比值与Pr/Ph交会(底图据Schwark et al., 1998)

      Fig.  5.  Plot of MTTC ratio vs. Pr/Ph for the Nenjiang Formation

      图  6  嫩江组TOC与粘土矿物含量交会

      Fig.  6.  Plot of TOC and clay mineral contents from the Nenjiang Formation

      图  7  松辽盆地嫩江组有机质富集模式

      Fig.  7.  Enrichment models of organic matter in the Nenjiang Formation of the Songliao basin

      表  1  嫩江组体积和元素地球化学指标

      Table  1.   Bulk geochemical and element geochemical parameters in the Nenjiang Formation

      层位 岩性 响应值 TOC(%) Tmax
      (℃)
      HI
      (mg/g TOC)
      P(%) Ti(%) Sr/Ba V/Ni Sr/Cu δ18O
      (10-3,PDB)
      嫩二
      晚期
      泥岩段 均值/n=5 1.9 435 206 0.09 0.31 0.41 3.5 5.4 -11.0
      范围 1.7~2.5 434~439 100~299 0.08~0.09 0.27~0.35 0.40~0.42 3.2~3.8 5.4~5.5 -11.3~-10.8
      嫩二
      早期
      泥岩段 均值/n=8 2.7 437 445 0.04 0.22 0.41 2.8 3.0 -12.6
      范围 2.0~3.9 427~441 282~556 0.04~0.04 0.16~0.27 0.38~0.44 1.6~3.4 2.8~3.0 /
      油页岩段 均值/n=13 7.9 434 682 0.16 0.24 0.47 3.2 2.4 -12.5
      范围 5.3~11.9 427~437 614~736 0.05~0.39 0.18~0.29 0.38~0.62 2.1~3.9 1.7~3.6 -12.9~-12.0
      嫩一
      时期
      泥岩段 均值/n=16 1.8 435 414 0.07 0.27 0.97 4.3 9.6 -7.7
      范围 0.7~3.4 432~440 109~632 0.04~0.12 0.25~0.29 0.68~1.12 2.4~5.2 6.2~13.6 -10.4~-5.6
      油页岩段 均值/n=6 6.4 435 696 0.06 0.27 0.77 4.5 4.4 -9.3
      范围 4.7~8.8 431~438 666~737 0.04~0.09 0.26~0.27 0.64~0.90 4.4~4.7 2.8~6.4 /
      注:体积和同位素参数测试于奥地利Montanuniversität Leobe有机地球化学实验室;元素测试于核工业北京地质研究院分析测试研究中心.
      下载: 导出CSV

      表  2  嫩江组生物标志化合物指标

      Table  2.   Biomarker parameters from the Nenjiang formation

      层位 岩性 响应值 CPI Pr/Ph C27/C29
      甾烷
      4-甲基
      甾烷
      藿烷
      含量
      22S/
      (22S+22R)
      升藿烷
      伽马蜡
      烷指数
      MTTC
      比值
      β-胡萝
      卜烷
      芳基类异
      戊二烯
      甾类/
      藿类
      嫩二
      早期
      泥岩
      均值/n=3 2.7 1.4 0.60 555 257 0.40 0.12 0.75 7 0.3 2.8
      范围 2.4~3.1 1.2~1.5 (0.4~0.8) 396~835 201~358 0.38~0.41 0.09~0.15 0.72~0.76 5~10 0.2~0.4 2.6~3.2
      油页
      岩段
      均值/n=7 2.7 1.2 0.71 797 534 0.35 0.10 0.80 13 0.8 2.6
      范围 2.2~3.1 0.9~1.4 (0.6~0.9) 570~1 017 249~851 0.34~0.36 0.07~0.14 0.69~0.88 3~26 0.5~1.5 2.0~3.3
      嫩一
      时期
      泥岩
      均值/n=6 1.4 0.4 0.70 579 516 0.40 0.33 0.51 55 1.5 2.3
      范围 1.2~1.6 0.3~0.5 (0.6~0.8) 217~1 016 250~747 0.37~0.44 0.19~0.52 0.37~0.63 27~88 0.8~2.4 1.4~3.3
      油页
      岩段
      均值/n=3 1.4 0.3 0.66 764 628 0.38 0.25 0.49 64 1.9 1.8
      范围 1.3~1.6 0.3~0.4 (0.6~0.8) 301~1 004 372~807 0.37~0.39 0.22~0.29 0.39~0.58 51~78 1.1~2.0 1.6~2.0
      注:样品数据测试于奥地利Montanuniversität Leobe有机地球化学实验室;4-甲基甾烷、藿烷含量、β-胡萝卜烷、芳基类异戊二烯,单位为μg/g TOC.
      下载: 导出CSV
    • [1] Arnarson, T.S., Keil, R.G., 2005. Influence of Organic-Mineral Aggregates on Microbial Degradation of the Dinoflagellate Scrippsiella Trochoidea. Geochimica et Cosmochimica Acta, 69(8): 2111-2117. doi: 10.1016/j.gca.2004.11.004
      [2] Barakat, A.O., Rullkötter, J., 1997. A Comparative Study of Molecular Paleosalinity Indicators: Chromans, Tocopherols and C20 Isoprenoid Thiophenes in Miocene Lake Sediments (Nördlinger Ries, Southern Germany). Aquatic Geochemistry, 3: 169-190. doi: 10.1023/A:1009645510876
      [3] Bechtel, A., Jia, J.L., Strobl, S.A.I., et al., 2012. Paleoenvironmental Conditions during Deposition of the Upper Cretaceous Oil Shale Sequences in the Songliao Basin (NE China): Implications from Geochemical Analyses. Organic Geochemistry, 46(5): 76-95. doi: 10.1016/j.orggeochem.2012.02.003
      [4] Bechtel, A., Reischenbacher, D., Sachsenhofer, R.F., et al., 2007. Paleogeography and Paleoecology of the Upper Miocene Zillingdorf Lignite Deposit (Austria). International Journal of Coal Geology, 69(3): 119-143. doi: 10.1016/j.coal.2006.03.001
      [5] Bohacs, K.M., Carroll, A.R., Neal, J.E., et al., 2000. Lake-Basin Type, Source Potential, and Hydrocarbon Character: An Integrated Sequence-Stratigraphic Geochemical Framework. In: Glerlowski-Kordesch, E.H., Kelts, K.P., eds., Lake Basins through Space and Time. AAPG Studies in Geology, 46: 3-34.
      [6] Cai, J.G., Lu, L.F., Bao, Y.J., et al., 2012. The Significance and Variation Characteristics of Interlay Water in Smectite of Hydrocarbon Source Rocks. Sci. China: Earth Sci. , 42(4): 483-491 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed201203005
      [7] Carpenter, S.R., 2008. Phosphorous Control is Critical to Mitigating Eutrophication. Proceedings of the National Academy of Science USA, 105(32): 11039-11040. doi: 10.1073/pnas.0806112105
      [8] Carroll, A.R., Bohacs, K.M., 1999. Stratigraphic Classification of Ancient Lakes: Balancing Tectonic and Climatic Controls. Geology, 27(2): 99-102. doi:10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2
      [9] Carroll, A.R., Bohacs, K.M., 2001. Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins. AAPG Bulletin, 85(6): 1033-1053. doi: 10.1306/8626CA5F-173B-11D7-8645000102C1865D
      [10] Chen, J.F., Zhang, S.C., Sun, S.L., et al., 2006. Main Factors Influencing Marine Carbonate Source Rock Formation. Aata Geologica Sinica, 80(3): 467-472 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200603021.htm
      [11] Deng, H.W., Qian, K., 1993. Analysis on Sedimentary Geochemistry and Environment. Science Technology Press, Lanzhou (in Chinese).
      [12] Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., et al., 1978. Organic Geochemical Indicators of Paleo-environmental Conditions of Sedimentation. Nature, 272: 216-222. doi: 10.1038/272216a0
      [13] Feng, Z.H., Fang, W., Li, Z.G., et al., 2011. Depositional Environment of Terrestrial Petroleum Source Rocks and Geochemical Indicators in the Songliao Basin. Sci. China: Earth Sci. , 54(9): 1304-1317. doi: 10.1007/s11430-011-4268-0
      [14] Feng, Z.H., Fang, W., Wang, X., et al., 2009. Microfossils and Molecular Records in Oil Shales of the Songliao Basin and Implications for Paleo-Depositional Environment. Science in China(Ser. D), 52(10): 1559-1571. doi: 10.1007/s11430-009-0121-0
      [15] Feng, Z.Q., Jia, C.Z., Xie, X.N., et al., 2010. Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin, Northeast China. Basin Research, 22(1): 79-95. doi: 10.1111/j.1365-2117.2009.00445.x
      [16] Feng, Z.Q., Zhang, S., Fu, X.L., 2012. Depositional Evolution and Accumulation Response of Yaojia-Nenjiang Formation in Songliao Basin. Earth Science Frontiers, 19(1): 78-88 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dxqy201201012
      [17] Feng, Z.Q., Zhang, S., Xie, X.N., et al., 2006. Discovery of a Large-Scale Lacustrine Subaqueous Channel in the Nenjiang Formation of the Songliao Basin and Its Implication on Petroleum Geology. Acta Geologica Sinica, 80(8): 1226-1232 (in Chinese with English abstract). http://www.researchgate.net/publication/289308306_Discovery_of_a_large-scale_lacustrine_subaqueous_channel_in_the_Nenjiang_Formation_of_the_Songliao_Basin_and_its_implication_on_petroleum_geology
      [18] Gao, R.Q., Cai, X.Y., 1997. Field Formation Conditions and Distribution Rules in Songliao Basin. Petroleum Industry Press, Beijing (in Chinese).
      [19] Goncalves, F.T.T., 2002. Organic and Isotope Geochemistry of the Early Cretaceous Rift Sequence in the Camamu Basin, Brazil: Paleolimnological Inferences and Source Rock Models. Organic Geochemistry, 33(1): 67-80. doi: 10.1016/S0146-6380(01)00128-0
      [20] Grice, K., Schouten, S., Peters, K.E., et al., 1998. Molecular Isotopic Characterisation of Hydrocarbon Biomarkers in Palaeocene-Eocene Evaporitic, Lacustrine Source Rocks from the Jianghan Basin, China. Organic Geochemistry, 29(5-7): 1745-1764. doi: 10.1016/S0146-6380(98)00075-8
      [21] Hao, F., Zhou, X.H., Zhu, Y.M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co-evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323-339. doi: 10.1016/j.orggeochem.2011.01.010
      [22] Harris, N.B., Freeman, K.H., Pancost, R.D., et al., 2004. The Character and Origin of Lacustrine Source Rocks in the Lower Cretaceous Synrift Section, Congo Basin, West Africa. AAPG Bulletin, 88(8): 1163-1184. doi: 10.1306/02260403069
      [23] Hedges, J.I., Keil, R.G., 1995. Sedimentary Organic Matter Preservation: An Assessment and Speculative Synthesis. Marine Chemistry, 49(2-3): 81-115. doi: 10.1016/0304-4203(95)00008-F
      [24] Jia, J.L., 2012. Research on the Recognition and Resource Evaluation of the Upper Cretaceous Oil Shale Based on Geochemistry-Geophysics Technique in the Songliao Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      [25] Jia, J.L., Liu, Z.J., Bechtel, A., et al., 2013. Tectonic and Climate Control of Oil Shale Deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). International Journal of Earth Sciences, 102(6): 1717-1734. doi: 10.1007/s00531-013-0903-7
      [26] Jia, J.L., Liu, Z.J., Guo, W., et al., 2011. Application of Geological Analogy to Assess Oil Shale Resources of Depression Basin: An Example from Upper Cretaceous Songliao Basin. Journal of China Coal Society, 36(9): 1475-1480 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2011/00000036/00000009/art00005
      [27] Jia, J.L., Liu, Z.J., Meng, Q.T., et al., 2012. Quantitative Evaluation of Oil Shale Based on Well Log and 3-D Seismic Technique in the Songliao Basin, NE China. Oil Shale, 29(2): 128-150. doi: 10.3176/oil.2012.2.04
      [28] Katz, B.J., 2005. Controlling Factors on Source Rock Development—A Review of Productivity, Preservation and Sedimentation Rate. In: Harris, N.B., ed., The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. SEPM Special Publication, 82: 7-16.
      [29] Kennedy, M.J., Pevear, D.R., Hill, R.J., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295(5555): 657-660. doi: 10.1126/science.1066611
      [30] Langford, F.F., Blanc-Valleron, M.M., 1990. Interpreting Rock-Eval Pyrolysis Data Using Graphs of Pyrolyzable Hydrocarbons vs. Total Organic Carbon. AAPG Bulletin, 74(6): 799-804.
      [31] Lerman, A., Baccini, P., 1978. Lakes—Chemistry, Geology, Physics. Springer Verlag, Berlin.
      [32] Lewan, M.D., 1984. Factors Controlling the Proportionality of Vanadium to Nickel in Crude Oils. Geochimica et Cosmochimica Acta, 48(11): 2231-2238. doi: 10.1016/0016-7037(84)90219-9
      [33] Li, H.J., Xie, X.N., Huang, J.H., et al., 2012. Main Factors Controlling the Formation of Excellent Marine Source Rocks in Permian Maokou Formation of Northwest Sichuan, China. Earth Science—Journal of China University of Geosciences, 37(1): 171-180 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201201021.htm
      [34] Li, Z.X., Fan, P., Li, J.G., et al., 1998. An Application of Aryl Isoprenoids in Indicating Sedimentary Environments. Acta Sedimentologica Sinca, 16(2): 9-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB802.002.htm
      [35] Liu, B.J., 1980. Sedimentary Petrology. Geological Publishing House, Beijing (in Chinese).
      [36] Mayer, L.M., 1994. Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments. Geochimica et Cosmochimica Acta, 58(4): 1271-1284. doi: 10.1016/0016-7037(94)90381-6
      [37] Mayer, L.M., 2004. The Inertness of Being Organic. Marine Chemistry, 92(1-4): 135-140. doi: 10.1016/j.marchem.2004.06.022
      [38] Moldowan, J.M., Seifert, W.K., Gallegos, E.J., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG Bulletin, 69(8): 1255-1268.
      [39] Pedersen, T.F., Calvert, S.E., 1990. Anoxia versus Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rock? AAPG Bulletin, 74(4): 454-466. http://www.researchgate.net/publication/230892121_Anoxia_vs_productivity_what_controls_the_formation_of_organic-_carbon-rich_sediments_and_sedimentary_rocks
      [40] Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall Englewood Cliffs, New Jersey.
      [41] Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, New York.
      [42] Robinson, N., Eglinton, G., Brassell, S.C., et al., 1984. Dinoflagellate Origin for Sedimentary 4-Methylsteroids and 5Α(H)-Stanols. Nature, 308: 439-442. doi: 10.1038/308439a0
      [43] Schindler, D.W., Hecky, R.E., Findlay, D.L., et al., 2008. Eutrophication of Lake cannot be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. Proceedings of the National Academy of Science, 105(32): 11254-11258. doi: 10.1073/pnas.0805108105
      [44] Schwark, L., Vliex, M., Schaeffer, P., 1998. Geochemical Characterization of Malm Zeta Laminated Carbonates from the Franconian Alb, SW-Germany (Ⅱ). Organic Geochemistry, 29(8): 1921-1952. doi: 10.1016/s0146-6380(98)00192-2
      [45] Shanks, A.L., Trent, J.D., 1980. Marine Snow: Sinking Rates and Potential Role in Vertical Flux. Deep-Sea Research, 27(2): 137-144. doi: 10.1016/0198-0149(80)90092-8
      [46] Sinninghe Damsté, J.S., Keely, B.J., Betts, S.E., et al., 1993. Variations in Abundances and Distributions of Isoprenoid Chromans and Long-Chain Alkylbenzenes in Sediments of the Mulhouse Basin: A Molecular Sedimentary Record of Palaeosalinity. Organic Geochemistry, 20(8): 1201-1215. doi: 10.1016/0146-6380(93)90009-Z
      [47] Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., et al., 1995. Evidence for Gammacerane as an Indicator of Water Column Stratification. Geochimica et Cosmochimica Acta, 59(9): 1895-1900. doi: 10.1016/0016-7037(95)00073-9
      [48] Sinninghe Damsté, J.S., Kock-van Dalen, A.C., de Leeuw, J.W., et al., 1987. The Identification of Mono-, Di-, and Trimethyl 2-Methyl-2 (4, 8, 12-Trimethyltridecyl) Chromans and Their Occurrence in Geosphere. Geochimica et Cosmochimica Acta, 51(9): 2393-2400. doi: 10.1016/0016-7037(87)90292-4
      [49] Song, Z.G., Qin, Y., Geroge, S.C., et al., 2012. A Biomarker Study of Depositional Paleoenvironments and Source Inputs for the Massive Formation of Upper Cretaceous Lacustrine Source Rocks in the Songliao Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385(9): 137-151. doi: 10.1016/j.palaeo.2012.12.007
      [50] Stuiver, M., 1970. Oxygen and Carbon Isotope Ratios of Freshwater Carbonates as Climatic Indicators. Journal of Geophysical Research, 75(27): 5247-5257. doi: 10.1029/JC075i027p05247
      [51] Summons, R.E., Powell, T.G., 1987. Identification of Aryl Isoprenoids in Source Rocks and Crude Oils: Biological Markers for the Green Sulphur Bacteria. Geochimica et Cosmochimica Acta, 51(3): 557-566. doi: 10.1016/0016-7037(87)90069-X
      [52] Talbot, M.R., 1988. The Origins of Lacustrine Oil Source Rocks: Evidence from the Lakes of Tropical Africa. Geological Society, London, Special Publications, 40: 29-43. doi: 10.1144/GSL.SP.1988.040.01.04
      [53] Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin.
      [54] Tyson, R.V., 2005. The "Productivity versus Preservation" Controversy: Cause, Flaws and Resolution. In: Harris, N.B., ed., The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. SEPM Special Publication, 82: 17-33.
      [55] Tyson, R.V., Pearson, T.H., 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society, London, Special Publication, 58: 1-24. doi: 10.1144/GSL.SP.1991.058.01.01
      [56] Volkman, J.K., 1986. A Review of Sterol Markers for Marine and Terrigenous Organic Matter. Organic Geochemistry, 9(2): 83-99. doi: 10.1016/0146-6380(86)90089-6
      [57] Volkman, J.K., Barrett, S.M., Blackburn, S.I., 1999. Eustigmatophyte Microalgae are Potential Sources of C29 Sterols, C22-C28 N-Alcohols and C28-C32 N-Alkyl Diols in Freshwater Environments. Organic Geochemistry, 30(5): 307-318. doi: 10.1016/S0146-6380(99)00009-1
      [58] Volkman, J.K., Kearney, P., Jeffrey, S.W., 1990. A New Source of 4-Methyl Steroids and 5A(H)-Stanols in Sediments: Prymnesiophyte Microalgae of the Genus Pavlova. Organic Geochemistry, 15(5): 489-497. doi: 10.1016/0146-6380(90)90094-G
      [59] Wang, C.S., Feng, Z.Q., Zhang, L.M., et al., 2013. Cretaceous Paleogeography and Paleoclimate and the Setting of SKI Borehole Sites in Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385(9): 17-30. doi: 10.1016/j.palaeo.2012.01.030
      [60] Wang, D.P., Liu, L., Zhang, L.P., et al., 1995. Palaeoclimatology, Sedimentary Cycle, Sequence Stratigraphy of Cretaceous in Songliao Basin. Jilin University Press, Changchun (in Chinese).
      [61] Wang, L., Song, Z., Yin, Q., et al., 2011. Paleosalinity Significance of Occurrence and Distribution of Methyltrimethyltridecyl Chromans in the Upper Crataceous Nenjiang Formation, Songliao Basin, China. Organic Geochemistry, 42(11): 1411-1419. doi: 10.1016/j.orggeochem.2011.08.012
      [62] Yan, J.X., Liu, X.Y., 2007. Geobiological Interpretation of the Deposits of the Middle Permian Marine Oxygen-Deficient Source Rocks in South China: A Working Hypothesis. Earth Science—Journal of China University of Geosciences, 32(6): 789-796 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_zggdxxxswz-dqkx200704007.aspx
      [63] Zhang, L.P., Huang, D.F., Liao, Z.Q., 1999. Gammacerane Geochemical Indicator of Water Column Stratification. Acta Sedimentologica Sinca, 17(1): 136-140 (in Chinese with English abstract). http://www.researchgate.net/publication/285887066_Gammacerane-geochemical_indicator_of_water_column_stratification
      [64] Zhang, S., Fu, X.L., Zhang, C.C., 2011. Stratigraphic Sequences and Sedimentary Evolution in the Yaojia and Nenjiang Formations, Songliao Basin. Sedimentary Geology and Tethyan Geology, 31(2): 34-42 (in Chinese with English abstract). http://www.researchgate.net/publication/291947726_Stratigraphic_sequences_and_sedimentary_evolution_in_the_Yaojia_and_Nenjiang_Formations_Songliao_Basin
      [65] Zhang, Y.G., Cai, J.G., Xu, W.P., et al., 2007. Enrichment Mechanism of Organic Matter in the Muddy Hydrocarbon Source Rocks. Petroleum Industry Press, Beijing (in Chinese).
      [66] Zhu, G.Y., Jin, Q., 2002. Study on Source Rack Heterogeneity—A Case of Niu38 Well in Dongying Depression. Acta Petrolei Sinica, 23(5): 34-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200205006.htm
      [67] Zhuo, X.Z., Wang, Q., Zhu, X.M., et al., 2009. Relationship between Bottom Morphology of Lake Basin and Filling Sequence during Depression Period in the Southern Songliao Basin. Acta Petrolei Sinica, 30(4): 536-541 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200904011.htm
      [68] Zonneveld, K.A.F., Versteegh, G.J.M., Kasten, S., et al., 2010. Selective Preservation of Organic Matter in Marine Environments: Processes and Impact on the Sedimentary Record. Biogeosciences, 7(2): 483-511. doi: 10.5194/bg-7-483-2010
      [69] 蔡进功, 卢龙飞, 包于进, 等, 2012. 烃源岩中蒙皂石结合有机质后层间水的变化特征及其意义. 中国科学: 地球科学, 42(4): 483-491. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201204001.htm
      [70] 陈践发, 张水昌, 孙省利, 等, 2006. 海相碳酸盐岩优质烃源岩发育的主要影响因素. 地质学报, 80(3): 467-472. doi: 10.3321/j.issn:0001-5717.2006.03.021
      [71] 邓宏文, 钱凯, 1993. 沉积地球化学与环境分析. 甘肃: 科学技术出版社.
      [72] 冯志强, 张顺, 付秀丽, 2012. 松辽盆地姚家组-嫩江组沉积演化与成藏响应. 地学前缘, 19(1): 78-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201011.htm
      [73] 冯志强, 张顺, 解习农, 等, 2006. 松辽盆地嫩江组大型陆相坳陷湖盆湖底水道的发现及其石油地质意义. 地质学报, 80(8): 1226-1232. doi: 10.3321/j.issn:0001-5717.2006.08.017
      [74] 高瑞祺, 蔡希源, 1997. 松辽盆地油气田形成条件与分布规律. 北京: 石油工业出版社.
      [75] 贾建亮, 2012. 基于地球化学-地球物理的松辽盆地上白垩统油页岩识别与资源评价(博士学位论文). 长春: 吉林大学.
      [76] 贾建亮, 刘招君, 郭巍, 等, 2011. 地质类比法在坳陷盆地油页岩资源评价中的应用—以松辽盆地上白垩统为例. 煤炭学报, 36(9): 1475-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201109013.htm
      [77] 李红敬, 解习农, 黄俊华, 等, 2012. 川西北二叠系茅口组海相优质烃源岩发育控制因素. 地球科学——中国地质大学学报, 37(1): 171-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201021.htm
      [78] 李振西, 范璞, 李景贵, 等, 1998. 芳基类异戊二烯生标在指相上的应用. 沉积学报, 16(2): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB802.002.htm
      [79] 刘宝珺, 1980. 沉积岩石学. 北京: 地质出版社.
      [80] 王东坡, 刘立, 张立平, 等, 1995. 松辽盆地白垩纪古气候沉积旋回层序地层. 长春: 吉林大学出版社.
      [81] 颜佳新, 刘新宇, 2007. 从地球生物学角度讨论华南中二叠世海相烃源岩缺氧沉积环境成因模式. 地球科学——中国地质大学学报, 32 (6): 789-796. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706010.htm
      [82] 张立平, 黄第藩, 廖志勤, 1999. 伽马蜡烷-水体分层的地球化学标志. 沉积学报, 17(1): 136-140. doi: 10.3969/j.issn.1000-0550.1999.01.022
      [83] 张顺, 付秀丽, 张晨晨, 2011. 松辽盆地姚家组-嫩江组地层层序及沉积演化. 沉积与特提斯地质, 31(2): 34-42. doi: 10.3969/j.issn.1009-3850.2011.02.005
      [84] 张永刚, 蔡进功, 徐卫平, 等, 2007. 泥质烃源岩中有机质富集机制. 北京: 石油工业出版社.
      [85] 朱光有, 金强, 2002. 烃源岩的非均质及其研究——以东营凹陷牛38井为例. 石油学报, 23(5): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200205006.htm
      [86] 禚喜准, 王琪, 朱筱敏, 等, 2009. 松辽盆地南部拗陷期湖盆底形演化及充填序列. 石油学报, 30(4): 536-541. doi: 10.3321/j.issn:0253-2697.2009.04.010
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  3187
    • HTML全文浏览量:  210
    • PDF下载量:  275
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-07-22
    • 刊出日期:  2014-02-01

    目录

      /

      返回文章
      返回