Abnormal High-Pressure Formation Mechanism in Coal Reservoir of Bide-Santang Basin, Western Guizhou Province
-
摘要: 比德-三塘盆地含煤地层的储层压力普遍较高, 压力梯度较大, 异常高压发育.通过研究该盆地现今煤储层压力分布特点, 对煤层异常高压影响因素进行了综合分析, 阐明了其形成机制.结果表明: 构造作用是本区异常高压形成的最主要因素, 煤储层生烃作用和顶板泥岩的封闭性次之.盆地内部断裂较少, 具有良好的圈闭条件, 储层流体富集, 压力增大, 易出现超压地层.研究区煤层生烃能力强, 含气量高, 但渗透率普遍较低, 生成的烃类气体使得储层内部流体孔隙体积膨胀产生高压.同时, 超厚的顶板泥岩封闭性较好, 在沉积过程中极易产生欠压实作用, 进一步促进了异常高压的形成.Abstract: The coal reservoir has high reservoir pressure, great pressure gradient and developmental abnormal high pressure in Bide-Santang basin. This paper mainly analyzes the influence factors of abnormal high pressure and illustrates the formation mechanism by studying the distribution characteristics of coal reservoir pressure. Results show that the tectonism is the uppermost factor to the abnormal high pressure formation, hydrocarbon generation of coal reservoir and roof mudstone sealing take second place. There are few faults, good sealed conditions and rich reservoir fluid in the interior of basin, which led to the increase of coal reservoir pressure and abnormal high pressure. The coal reservoir has strong hydrocarbon generation ability, high gas content and low permeability, and generated hydrocarbon gas makes the internal fluid pore volume of coal reservoir expanded and produce high pressure. Moreover, the extra-thick roof mudstone which easily causes undercompacted compaction in the deposition process has good sealing, and further promotes the development of the abnormal pressure.
-
Key words:
- Bide-Santang basin /
- abnormal high pressure /
- coal reservoir /
- reservoir pressure /
- tectonics /
- hydrocarbons
-
表 1 研究区1001孔煤层顶板岩样孔隙结构情况(压汞法)
Table 1. Pore structure of rock samples from well 1001 in the study area(mercury immersion method)
编号 煤层位置 顶板岩性 埋深(m) 总孔容(10-3 cm3/g) 总表面积(m2/g) 中值孔径(nm) 平均孔径(nm) 退汞率(%) 孔隙度(%) 孔容法 面积法 岩1 3煤顶 炭质泥岩 115.68 0.016 2 5.638 19.2 5.0 11.5 25.98 3.20 岩2 7煤顶 泥质粉砂岩 158.70 0.017 6 7.920 10.1 6.4 8.9 20.40 3.78 岩3 石灰岩 160.45 0.003 9 0.003 47 490.0 668.8 5 205.7 25.64 0.89 岩4 菱铁岩 168.00 0.008 9 2.761 13.6 9.5 12.9 9.45 2.17 岩5 砂质泥岩 210.34 0.027 7 8.955 15.8 7.2 12.4 23.05 5.56 岩6 泥岩 253.31 0.028 5 10.459 13.0 6.9 10.9 21.19 5.91 岩7 泥岩 300.51 0.025 9 9.751 12.5 7.1 10.6 21.31 5.54 岩8 17煤顶 泥岩 350.39 0.013 8 3.542 32.0 6.8 15.6 8.40 3.00 岩9 粉砂岩 361.09 0.014 0 5.008 12.9 7.2 11.2 13.85 3.59 岩10 细砂岩 367.71 0.012 2 1.112 834.0 12.7 43.7 5.19 2.54 表 2 比德-三塘盆地煤层不同勘探区实验数据
Table 2. Statical results of CBM components content from blocks of study area
向斜名称 勘探区 煤层平均含气量(m3/t) 向斜名称 勘探区 煤层平均含气量(m3/t) 阿弓 15 比德 10 阿弓向斜 少普 18 比德向斜 化乐 11 大冲头 15 黑塘 10 珠藏向斜 肥田一 15 补作 18 肥田二 17 水公河向斜 五轮山 20 肥田三 16 中岭 20 红梅 15 坪山 11 表 3 研究区煤样气、水相对渗透率测试综合数据
Table 3. The air-water relative permeability test comprehensive data in study area
所属构造 勘探区样品号 孔隙度(%) 空气渗透率(mD) 残余水饱和度(%) 残余水下气相渗透率(mD) 左家寨1号 5.9 0.000 68 46.2 0.000 15 白泥箐向斜 左家寨2号 5.7 0.000 78 48.6 0.000 50 复兴 6.7 0.085 00 80.3 0.010 80 下对门3号 4.0 0.004 90 89.3 0.003 60 加戛背斜 联合8号 7.2 0.245 00 55.1 0.044 90 珠藏向斜 凤凰山1号 7.3 1.340 00 44.5 0.170 80 -
[1] Barker, C., 1972. Aquathermal Pressuring-Role of Temperature in Development of Abnormal-Pressure Zones: Geological Notes. AAPG Bulletin, 56 (10): 2068-2071. http://aapgbull.geoscienceworld.org/content/56/10/2068 [2] Borge, H., 2002. Modelling Generation and Dissipation of Overpressure in Sedimentary Basins: An Example from the Halten Terrace, Offshore Norway. Marine and Petroleum Geology, 19(3): 377-388. doi: 10.1016/S0264-8172(02)0023-5 [3] Dickey, P.A., Cox, W.C., 1977. Oil and Gas in Reservoirs with Subnormal Pressures. AAPG Bulletin, 61 (12): 2134-2142. http://www.researchgate.net/publication/255495371_Oil_and_Gas_in_Reservoirs_with_Subnormal_Pressures [4] Dickinson, G., 1953. Geological Aspects of Abnormal Reservoir Pressures in Gulf Coast Louisiana. AAPG Bulletin, 37 (2): 410-432. [5] Fertl, W.H., Chilingarian, G.V., 1988. Detection and Evaluation of Geopressured Subsurface Formations Based on Dielectric (Electromagnetic Wave Propagation) Measurements. Energy Sources, 10 (3): 195-200. doi: 10.1080/00908318808908926 [6] Gui, B.L., Wang, X.R., Wang, C.D., et al., 2001. CBM Geological and Prospecting of East Yunnan-West Guizhou. Yunnan Science & Technology Press, Kunming, 58-119 (in Chinese). [7] Hao, F., Zou, H.Y., Ni, J.H., et al., 2002. Evolution of Overpressured Systems in Sedimentary Basins and Conditions for Deep Oil/Gas Accumulation. Earth Science-Journal of China University of Geosciences, 27(5): 610-614(in Chinese with English abstract). http://www.researchgate.net/publication/293235651_Evolution_of_overpressured_systems_in_sedimentary_basins_and_conditions_for_deep_oilgas_accumulation [8] Hunt, J.M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 74 (1): 1-12. http://www.researchgate.net/publication/246302806_Generation_and_migration_of_petroleum_from_abnormally_pressured_fluid_compartments [9] Hunt, J.M., Whelan, J.K., Eglinton, L.B., et al., 1994. Gas Generation-A Major Cause of Deep Gulf Coast Overpressures. Oil & Gas Journal, 92: 59-63. http://www.researchgate.net/publication/236447381_Gas_generation_--_A_major_cause_of_deep_Gulf_Coast_overpressures [10] Jin, J., Tang, X.G., 2010. Structural Features and Their Genesis in Zhijin-Nayong Coalfield, Guizhou Province. Coal Geology of China, 22 (3): 8-12 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_zgmtdz201003003.aspx [11] Li, G.Y., 2009. Application and Research on the Technology of Formation Pressure Predication(Dissertation). Chengdu University of Science and Technology, Chengdu, 66-175 (in Chinese with English abstract). [12] Li, Y.X., Pang, X.Q., Jiang, Z.X., 2003. Relationship of Stress & Strain to Abnormal Tectonic Pressure and Main Control Aspects on Abnormal Tectonic Pressure Forming. Earth Science-Journal of China University of Geosciences, 28(2): 179-184(in Chinese with English abstract). [13] Li, Z.D., Zhou, W., Wu, Y.P., 2004. Genetic Analysis on the Abnormal Pressure of the Gas Reservoirs in the Coal Layers in China. Journal of Mineralogy and Petrology, 24 (4): 87-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200404016.htm [14] Luo, X.R., Xiao, L.X., Li, X.Y., et al., 2004. Overpressure Distribution and Affecting Factors in Southern Margin of Junggar Basin. Earth Science-Journal of China University of Geosciences, 29(4): 404-411(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=10021153 [15] Marine, I.W., Fritz, S.J., 1981. Osmotic Model to Explain Anomalous Hydraulic Heads. Journal of Water Resources Research, 17 (1): 73-82. doi: 10.1029/WR017i001p00073 [16] Osborne, M.J., Swarbrick, R.E., 1997. Mechanisms for Generating Overpressure in Sedimentary Basins: A Reevaluation. AAPG Bulletin, 81 (6): 1023-1041. http://www.researchgate.net/publication/246798793_Mechanisms_for_generating_overpressure_in_sedimentary_basins_A_reevaluation [17] Rubey, W.W., Hubbert, M.K., 1959. Role of Fluid Pressure in Mechanics of Overthrust Faulting Ⅱ. Overthrust Belt in Geosynclinal Area of Western Wyoming in Light of Fluid Pressure Hypothesis. Geol. Soc. Am. Bull. , 70 (2): 167-206. doi: 10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2 [18] Xu, B.B., He, M.D., 2002. Coal Mine Exploration of Guizhou Province. China University of Mining & Technology Press, Xuzhou, 165-212 (in Chinese). [19] Yang, W.N., 1996. Analysis of Remote Sensing Images for Tectonic Pattern and Stress Field in Liuzhi-Langdai Region, Western Guizhou. Remote Sensing for Land & Resources, 2: 21-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTYG602.002.htm [20] Yang, Z.B., 2011. Coalbed Methane Reservoiring Process under Condition of Multi-Coalbeds Overlay(Dissertation). China University of Mining & Technology, Xuzhou, 85-94 (in Chinese with English abstract). [21] Yue, G.Y., Zhang, S.J., Yang, W.N., 1994. Structural Deformation Patterns and Tectonic Stress Field in West-Central Guizhou. Scientia Geologica Sinica, 29 (1): 11-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199401001.htm [22] Zhu, Y.M., Zhao, H., Yan, Q.L., et al., 2008. Tectonic Evolution and CBM Reservoir Formation in Wulunshan Minefield, Guizhou. Coal Geology of China, 20 (10): 38-41 (in Chinese with English abstract). http://www.cqvip.com/QK/96650A/200810/28652245.html [23] 桂宝林, 王学仁, 王朝栋, 等, 2001. 黔西滇东煤层气地质与勘探. 昆明: 云南科技出版社, 58-119. [24] 郝芳, 邹华耀, 倪建华, 等, 2002. 沉积盆地超压系统演化与深层油气成藏条件. 地球科学—中国地质大学学报, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htm [25] 金军, 唐显贵, 2010. 贵州省织金-纳雍煤田构造特征及其成因. 中国煤炭地质, 22(3): 8-12. doi: 10.3969/j.issn.1674-1803.2010.03.03 [26] 李刚毅, 2009. 地层压力预测技术及应用研究(硕士学位论文). 成都: 成都理工大学, 66-175. [27] 李玉喜, 庞雄奇, 姜振学, 2003. 应力、应变与构造超压关系及构造超压控制因素分析. 地球科学—中国地质大学学报, 28(2): 179-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302011.htm [28] 李仲东, 周文, 吴永平, 2004. 我国煤层气储层异常压力的成因分析. 矿物岩石, 24(4): 87-92. doi: 10.3969/j.issn.1001-6872.2004.04.016 [29] 罗晓容, 肖立新, 李学义, 等, 2004. 准噶尔盆地南缘中段异常压力分布及影响因素. 地球科学—中国地质大学学报, 29(4): 404-411. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200404004.htm [30] 徐彬彬, 何明德, 2002. 贵州煤田地质. 徐州: 中国矿业大学出版社, 165-212. [31] 杨武年, 1996. 黔西六枝-朗岱地区构造格局及其应力场遥感图像解析. 国土资源遥感, 2: 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG602.002.htm [32] 杨兆彪, 2011. 多煤层叠置条件下的煤层气成藏作用(博士学位论文). 徐州: 中国矿业大学, 85-94. [33] 乐光禹, 张时俊, 杨武年, 1994. 贵州中西部的构造格局与构造应力场. 地质科学, 29(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199401001.htm [34] 朱炎铭, 赵洪, 闫庆磊, 等, 2008. 贵州五轮山井田构造演化与煤层气成藏. 中国煤炭地质, 20(10): 38-41. doi: 10.3969/j.issn.1674-1803.2008.10.011