• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    石柱地区建深1井志留系超压顶封层的封闭机制

    杨兴业 何生 何治亮 李天义 王芙蓉

    杨兴业, 何生, 何治亮, 李天义, 王芙蓉, 2014. 石柱地区建深1井志留系超压顶封层的封闭机制. 地球科学, 39(1): 64-72. doi: 10.3799/dqkx.2014.006
    引用本文: 杨兴业, 何生, 何治亮, 李天义, 王芙蓉, 2014. 石柱地区建深1井志留系超压顶封层的封闭机制. 地球科学, 39(1): 64-72. doi: 10.3799/dqkx.2014.006
    Yang Xingye, He Sheng, He Zhiliang, Li Tianyi, Wang Furong, 2014. Sealing Mechanism of Overpressured Top Seal in Well Jianshen 1 Silurian Formation of Shizhu Synclinorium. Earth Science, 39(1): 64-72. doi: 10.3799/dqkx.2014.006
    Citation: Yang Xingye, He Sheng, He Zhiliang, Li Tianyi, Wang Furong, 2014. Sealing Mechanism of Overpressured Top Seal in Well Jianshen 1 Silurian Formation of Shizhu Synclinorium. Earth Science, 39(1): 64-72. doi: 10.3799/dqkx.2014.006

    石柱地区建深1井志留系超压顶封层的封闭机制

    doi: 10.3799/dqkx.2014.006
    基金项目: 

    国家自然科学重点基金项目 40739904

    国家科技重大专项 2011ZX05005-002

    国家自然科学基金面上项目 41072093

    详细信息
      作者简介:

      杨兴业(1987-), 男, 博士研究生, 主要从事油气成藏机理及盖层评价方面的研究.E-mail: yxingye@126.com

    • 中图分类号: P618

    Sealing Mechanism of Overpressured Top Seal in Well Jianshen 1 Silurian Formation of Shizhu Synclinorium

    • 摘要: 石柱复向斜地区建深1井志留系地层钻遇超压, 压力系数为1.75~2.00, 且全层段含气.地层中超压形成和保存与盖层封闭的有效性密切相关.在对超压层段泥岩压实特征以及埋藏史、热史、生烃史研究的基础上分析欠压实、生烃、构造挤压及其他增压机制在志留系超压形成所起的作用, 其中早三叠世至侏罗纪末期干酪根和液态烃裂解生气作用引起的流体体积膨胀是本区超压形成的主控因素, 生气作用终止后无重要的增压事件发生.早白垩世以来的构造抬升作用导致大量溶解态天然气从地层水中出溶, 并聚集于孔喉半径较大的粉砂岩层中.志留系顶部超压顶封层中泥岩和粉砂岩频繁出现互层, 因而形成多个含气粉砂岩薄层.垂向上各个气水界面的毛细管作用力具有可叠加性, 增强了顶封层对超压的封闭能力, 使本区志留系地层中的超压保存至今.

       

    • 图  1  鄂西渝东地区构造单元

      Fig.  1.  Tectonic units in the area of western Hubei and eastern Chongqing

      图  2  建深1井志留系泥岩密度、声波时差与地层压力特征

      Fig.  2.  Shale density, acoustic time and formation pressure of Silurian formation in Well Jianshen 1

      图  3  建深1井沉积速率演化

      Fig.  3.  Sedimentation rate evolvement of Well Jianshen 1

      图  4  建深1井斜志留系地层埋藏史、热史和生烃转化率演化模拟

      Fig.  4.  Burial history, thermal history and transformation ratio evolution modeling of Silurian formation in Well Jianshen 1

      图  5  封闭层渗透率与厚度关系

      Fig.  5.  The relationship between pressure seal permeability and thickness

      图  6  建深1井压力过渡带岩性特征及天然气层显示

      Fig.  6.  Lithologic character and nature gas appearance in pressure transition in Well Jianshen 1

      图  7  石柱复向斜志留系超压封闭演化

      Fig.  7.  The evaluation of Silurian formation pressure sealing in Shizhu synclinoria

    • [1] Bjorkum, P.A., Walderhaug, O., Nadeau, P.H., 1998. Physical Constraints on Hydrocarbon Leakage and Trapping Revisited. Petroleum Geoscience, 4(3): 237-239. doi: 10.1144/petgeo.4.3.237
      [2] Bowers, G.L., Katsube, T.J., 2002. The Role of Shale Pore Structure on the Sensitivity of Wire-Line Logs to Overpressure. In: Huffman, A.R., Bowers, G.L., eds., Pressure Regimes in Sedimentary Basins and Their Prediction. AAPG Memoir, 76: 43-60.
      [3] Bredehoeft, J.D., Hanshaw, B.B., 1968. On the Maintenance of Anomalous Fluid Pressures: I. Thick Sedimentary Sequences. Geological Society of America Bulletin, 79(9): 1097-1106. doi: 10.1130/0016-7606(1968)79[1097:OTMOAF]2.0.CO;2
      [4] Deming, D., 1994. Factors Necessary to Define a Pressure Seal. AAPG Bulletin, 78(6): 1005-1009. http://archives.datapages.com/data/meta/bulletns/1994-96/images/pg/00790007/1050/1079_firstpage.pdf
      [5] Deming, D., Cranganu, C., Lee, Y., 2002. Self-Sealing in Sedimentary Basins. Journal of Geophysical Research, 107(B12): 2329-2339. doi: 10.1029/2001JB000504
      [6] Deng, B., Liu, S.G., Liu, S., et al., 2009. Restoration of Exhumation Thickness and Its Significance in Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 675-686(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200906016.htm
      [7] Fu, G., Lü, Y.F., Yang, M., 2002. Quantitative Study on Abnormal Pore Fluid Pressure in Undercompacted Mudstone. Xinjiang Petroleum Geology, 23(4): 295-298 (in Chinese with English abstract).
      [8] Fu, Y.X., 2000. Relationship between Structural Characteristics and Petroleum Accumulation in Western Chongqing and Eastern Hubei. Jianghan Petroleum Science, 10(2): 63-66 (in Chinese with English abstract).
      [9] Guo, X.W., He, S., Liu, K.Y., et al., 2010. Oil Generation as the Dominant Overpressure Mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China. AAPG Bulletin, 94(12): 1859-1881. doi: 10.1306/05191009179
      [10] Hanor, J.S., 1980. Dissolved Methane in Sedimentary Brines: Potential Effect on the PVT Properties of Fluid Inclusions. Economic Geology, 75(4): 603-617. doi: 10.2113/gsecongeo.75.4.603
      [11] Hao, F., 2005. Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressured Basins. Science Press, Beijing (in Chinese).
      [12] Hao, F., Zou, H.Y., Ni, J.H. et al., 2002. Evolution of Overpressured Systems in Sedimentary Basins and Conditions for Deep Oil/Gas Accumulation. Earth Science-Journal of China University of Geosciences, 27(5): 610-615(in Chinese with English abstract). http://www.researchgate.net/publication/293235651_Evolution_of_overpressured_systems_in_sedimentary_basins_and_conditions_for_deep_oilgas_accumulation
      [13] He, S., He, Z.L., Yang, Z., et al., 2009. Characteristics, Well-Log Responses and Mechanisms of Overpressures within the Jurassic Formation in the Central Part of Junggar Basin. Earth Science-Journal of China University of Geosciences, 34(3): 457-470 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.051
      [14] Hedberg, H.D., Sass, L.C., Funkhouser, H.J., 1947. Oil Fields of Greater Oficina Area, Central Anzoategui, Venezuela. AAPG Bulletin, 31(12): 2089-2169.
      [15] Hermanrud, C., Wensaas, L., Teige, G.M.G., et al., 1998. Shale Porosities from Well Logs on Haltenbanken (Offshore Mid-Norway) Show no Influence of Overpressuring. In: Law, B.E., Ulmishek, G.F., Slavin, V.I., eds., Abnormal Pressures in Hydrocarbon Environments. AAPG Memoir, 70: 65-85.
      [16] Hunt, J.M., 1990, Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 74(1): 1-12. http://www.researchgate.net/publication/246302806_Generation_and_migration_of_petroleum_from_abnormally_pressured_fluid_compartments
      [17] Lambe, T.W., Whitman, R.V., 1979. Soil Mechanics SI Version. Wiley India Pvt. Limited, New York.
      [18] Lee, Y., Deming, D., 2002. Overpressures in the Anadarko Basin, Southwestern Oklahoma: Static or Dynamic. AAPG Bulletin, 86(1): 145-160.
      [19] Li, M.C., 2004. Oil and Gas Migration. Petroleun Industry Press, Beijing (in Chinese).
      [20] Liang, X., 2006. The Comprehensive Evaluation of Hydrocarbon Preservation Units in Modifying-Type Basins of Sea Facies in South China(Dissertation). Southwest Petroleum University, Chengdu(in Chinese with English abstract).
      [21] Lou, Z.H., Zhu, R., 2006. Hydrogeological and Hydrogeochemical Characteristics and Hydrocarbon Preservation Conditions in Marine Strata in Southern China. Oil & Gas Geology, 27(5): 584-593 (in Chinese with English abstract). http://www.researchgate.net/publication/285011195_Hydrogeological_and_hydrogeochemical_characteristics_and_hydrocarbon_preservation_conditions_for_marine_strata_in_China
      [22] Luo, X.R., 2004. Quantitative Analysis on Overpressuring Mechanism Resulted from Tectonic Stress. Chinese Journal of Geophysics, 47(6): 1086-1093 (in Chinese with English abstract).
      [23] Luo, X.R., Vasseur, G., 1992. Contributions of Compaction and Aquathermal Pressuring to Geopressure and the Influence of Environmental-Conditions. AAPG Bulletin, 76(10): 1550-1559.
      [24] Ma, Y.S., Lou, Z.H., Guo, T.L., et al., 2006. An Exploration on a Technological System of Petroleum Preservation Evaluation for Marine Strata in South China. Acta Geologica Sinica, 80(3): 406-417 (in Chinese with English abstract).
      [25] Magara, K., 1978. Compaction and Fluid Migration: Practical Petroleum Geology. Elsevier Science Pub. Co., Amsterdam.
      [26] Marine, I.W., Fritz, S.J., 1981. Osmotic Model to Explain Anomalous Hydraulic Heads. Water Resources Research, 17(1): 73-82. doi: 10.1029/WR017i001p00073
      [27] Neuzil, C.E., 1986. Groundwater Flow in Low-Permeability Environments. Water Resources Research, 22(8): 1163-1195. doi: 10.1029/WR022i008p01163
      [28] Neuzil, C.E., 1994. How Permeable are Clays and Shales. Water Resources Research, 30(2): 145-150. doi: 10.1029/93WR02930
      [29] Ortoleva, P.J., 1994. Basin Compartmentation: Definitions and Mechanisms. In: Ortoleva, P.J., ed., Basin Compartments and Seals. AAPG Memoir, 61: 39-51.
      [30] Osborne, M.J., Swarbrick, R.E., 1997. Mechanisms for Generating Overpressure in Sedimentary Basins: A Reevaluation. AAPG Bulletin, 81(6): 1023-1041.
      [31] Pan, W.L., Liu, G.X., Lü, J.X., 2003. Hydrochemical Characteristics of Formation Water and Their Significance in Jiannan Gasfield, Yudong Area of West Hubei Province. Petroleum Geology & Experiment, 25(3): 295-299 (in Chinese with English abstract).
      [32] Powley, D.E., 1990. Pressures and Hydrogeology in Petroleum Basins. Earth-Science Reviews, 29(1-4): 215-226. doi: 10.1016/0012-8252(0)90038-W
      [33] Price, L.C., 1979. Aqueous Solubility of Methane at Elevated Pressures and Temperatures. AAPG Bulletin, 63(9): 1527-1533. http://aapgbull.geoscienceworld.org/content/63/9/1527
      [34] Revil, A., Cathles, L.M., Shosa, J.D., et al., 1998. Capillary Sealing in Sedimentary Basins: A Clear Field Example. Geophysical Research Letters, 25(3): 389-392. doi: 10.1029/97GL03775
      [35] Ross, B., 1990. The Diversion Capacity of Capillary Barriers. Water Resources Research, 26(10): 2625-2629. doi: 10.1029/WR026i010p02625
      [36] Schroth, M.H., Istok, J.D., Selker, J.S., 1998. Three-Phase Immiscible Fluid Movement in the Vicinity of Textural Interfaces. Journal of Contaminant Hydrology, 32(1-2): 1-23. doi: 10.1016/S0169-7722(97)00069-7
      [37] Shosa, J.D., 2000. Overpressure in Sedimentary Basins: Mechanisms and Mineralogical Implications. Cornell University, New York.
      [38] Swarbrick, R.E., Osborne, M.J., 1998. Mechanisms That Generate Abnormal Pressures: An Overview. In: Law, B.E., Ulmishek, G.F., Slavin, V.I., eds., Abnormal Pressures in Hydrocarbon Environments. AAPG Memoir, 70: 13-34.
      [39] Swarbrick, R.E., Osborne, M.J., Yardley, G.S., 2002. Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms. In: Huffman, A.R., Bowers, G.L., eds., Pressure Regimes in Sedimentary Basins and Their Prediction. AAPG Memoir, 76: 1-12.
      [40] Teige, G.M.G., Hermanrud, C., Wensaas, L., et al., 1999. The Lack of Relationship between Overpressure and Porosity in North Sea and Haltenbanken Shales. Marine and Petroleum Geology, 16(4): 321-335. doi: 10.1016/S0264-8172(98)00035-X
      [41] Xu, G.S., Cao, J.F., Zhu, J.M., et al., 2009. Division of Fluid Compartments and the Formation and Evolution of Oil and Gas Accumulation in the Typical Structures of Western Hubei-Eastern Chongqing Area, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 621-630 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200906008.htm
      [42] Yang, X.Y., He, S., 2010. Mechanisms for Abnormal Pressure Seal in Pressure Compartments: A Review. Geological Science and Technology Information, 29(6): 66-72 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201006011.htm
      [43] Yassir, N., Addis, M.A., 2002. Relationships between Pore Pressure and Stress in Different Tectonic Settings. In: Huffman, A.R., Bowers, G.L., eds., Pressure Regimes in Sedimentary Basins and Their Prediction. AAPG Memoir, 76: 79-88.
      [44] Zhao, X.M., Li, G.P., Wang, S.Y., et al., 2002. Logging Identification of Uncompacted and Superpressure Belts. Oil & Gas Geology, 23(1): 63-65 (in Chinese with English abstract).
      [45] 邓宾, 刘树根, 刘顺, 等, 2009. 四川盆地地表剥蚀量恢复及其意义. 成都理工大学学报: 自然科学版, 36(6): 675-686. doi: 10.3969/j.issn.1671-9727.2009.06.013
      [46] 付广, 吕延防, 杨勉, 2002. 欠压实泥岩异常孔隙流体压力的定量研究. 新疆石油地质, 23(4): 295-298. doi: 10.3969/j.issn.1001-3873.2002.04.008
      [47] 付宜兴, 2000. 鄂西渝东区构造特征及其与油气聚集关系研究. 江汉石油科技, 10(2): 63-66.
      [48] 郝芳, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社.
      [49] 郝芳, 邹华耀, 倪建华, 等, 2002. 沉积盆地超压系统演化与深层油气成藏条件. 地球科学—中国地质大学学报, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htm
      [50] 何生, 何治亮, 杨智, 等, 2009. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因. 地球科学—中国地质大学学报, 34(3): 457-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903010.htm
      [51] 李明诚, 2004. 石油与天然气运移. 北京: 石油工业出版社.
      [52] 梁兴, 2006. 中国南方海相改造型盆地含油气保存单元综合评价(博士毕业论文). 成都: 西南石油大学.
      [53] 楼章华, 朱蓉, 2006. 中国南方海相地层水文地质地球化学特征与油气保存条件. 石油与天然气地质, 27(5): 584-593. doi: 10.3321/j.issn:0253-9985.2006.05.002
      [54] 罗晓容, 2004. 构造应力超压机制的定量分析. 地球物理学报, 47(6): 1086-1093. doi: 10.3321/j.issn:0001-5733.2004.06.022
      [55] 马永生, 楼章华, 郭彤楼, 等, 2006. 中国南方海相地层油气保存条件综合评价技术体系探讨. 地质学报, 80(3): 406-417. doi: 10.3321/j.issn:0001-5717.2006.03.013
      [56] 潘文蕾, 刘光祥, 吕俊祥, 2003. 鄂西渝东区建南气田地层水水化学特征及其意义. 石油实验地质, 25(3): 295-299. doi: 10.3969/j.issn.1001-6112.2003.03.014
      [57] 徐国盛, 曹竣锋, 朱建敏, 等, 2009. 鄂西渝东地区典型构造流体封存箱划分及油气藏的形成与演化. 成都理工大学学报: 自然科学版, 36(6): 621-630. doi: 10.3969/j.issn.1671-9727.2009.06.007
      [58] 杨兴业, 何生, 2010. 超压封存箱的压力封闭机制研究进展综述. 地质科技情报, 29(6): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006011.htm
      [59] 赵新民, 李国平, 王树寅, 等, 2002. 欠压实带与超压带的测井识别. 石油与天然气地质, 23(1): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200201012.htm
    • 加载中
    图(7)
    计量
    • 文章访问数:  3294
    • HTML全文浏览量:  103
    • PDF下载量:  609
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-03-24
    • 刊出日期:  2014-01-01

    目录

      /

      返回文章
      返回