• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    桂北圆石山早侏罗世A型花岗岩的岩石成因及意义

    贾小辉 王晓地 杨文强 牛志军

    贾小辉, 王晓地, 杨文强, 牛志军, 2014. 桂北圆石山早侏罗世A型花岗岩的岩石成因及意义. 地球科学, 39(1): 21-36. doi: 10.3799/dqkx.2014.003
    引用本文: 贾小辉, 王晓地, 杨文强, 牛志军, 2014. 桂北圆石山早侏罗世A型花岗岩的岩石成因及意义. 地球科学, 39(1): 21-36. doi: 10.3799/dqkx.2014.003
    Jia Xiaohui, Wang Xiaodi, Yang Wenqiang, Niu Zhijun, 2014. The Early Jurassic A-Type Granites in Northern Guangxi, China: Petrogenesis and Implications. Earth Science, 39(1): 21-36. doi: 10.3799/dqkx.2014.003
    Citation: Jia Xiaohui, Wang Xiaodi, Yang Wenqiang, Niu Zhijun, 2014. The Early Jurassic A-Type Granites in Northern Guangxi, China: Petrogenesis and Implications. Earth Science, 39(1): 21-36. doi: 10.3799/dqkx.2014.003

    桂北圆石山早侏罗世A型花岗岩的岩石成因及意义

    doi: 10.3799/dqkx.2014.003
    基金项目: 

    中国地质调查局基础地质综合研究项目《南岭成矿带基础地质综合研究》 1212011085356

    详细信息
      作者简介:

      贾小辉(1980-), 助理研究员, 从事岩石学、地球化学相关研究. E-mail: jxh1226@126.com

    • 中图分类号: P581

    The Early Jurassic A-Type Granites in Northern Guangxi, China: Petrogenesis and Implications

    • 摘要: 桂北圆石山花岗岩中发育大量镁铁质包体.LA-ICP-MS锆石U-Pb定年结果显示, 花岗岩形成于早侏罗世(179±2 Ma).花岗岩的地球化学特征表现为硅含量均一, 富碱更富钾、相对富铁而贫镁, 具有高的104×Ga/A1比值和Zr+Nb+Ce+Y含量, 属于A型花岗岩.圆石山花岗岩具有比较均一的Sr、Nd同位素组成(ISr=0.701 7~0.710 8, εNd(t)=-7.77~-4.55).镁铁质包体则显示了稍低的ISr值(0.705 0~0.707 1)和稍高的εNd(t)值(-4.87~-2.63).花岗岩的锆石原位Hf同位素组成为: (176Hf/177Hf)i=0.282 62~0.282 70, εHf(t)=-1.68~1.17, 相应的Hf同位素两阶段模式年龄TDM2变化于1.25~1.43 Ga之间.圆石山花岗岩可能是在伸展环境下由低成熟度的下地壳物质部分熔融所形成.自早侏罗世(~200 Ma)以来, 伸展作用是华南内陆构造背景的主体, 多期次的玄武质岩浆底侵作用可能是燕山期伸展作用的直接诱因.华南内陆早侏罗世时期可能仍处于板内“后碰撞”环境.

       

    • 图  1  桂北恭城圆石山地质略图(a)及区域构造地质简图(b)(底图据广西地质矿产勘查开发局, 恭城瑶族自治县幅1∶5万区域(G49E019012)地质调查报告, 1999)

      Fig.  1.  Sketch geological map of Yuanshishan (a) and sketch geological setting map (b) of the Gongcheng area, northern Guangxi

      图  2  圆石山花岗岩锆石U-Pb年龄谐和图

      Fig.  2.  The U-Pb concordant diagrams for the representative zircons of the Yuanshishan granites

      图  3  SiO2 vs. K2O(a)(Peccerillo and Taylor, 1976)和A/CNK vs. A/NK(b)

      Fig.  3.  SiO2 vs. K2O diagrams (a) and A/CNK vs. A/NK diagrams (b) for the Yuanshishan granites

      图  4  圆石山花岗岩稀土元素分布模式(a)和原始地幔标准化微量元素蜘蛛网(b)

      Fig.  4.  The chondrite-normalized rare earth elements (REE) (a) and the primitive mantle-normalized multi-element diagrams (b) of the Yuanshishan granites

      图  5  104×Ga/Al vs. Zr、Nb、Ce、Y图解(Whalen et al., 1987)

      Fig.  5.  104×Ga/Al vs. Zr, Nb, Ce, Y diagrams for the Yuanshishan granites

      图  6  圆石山花岗岩锆石的εHf(t)频谱图(a)和TDM2频谱图(b)

      Fig.  6.  The frequence diagrams for εHf(t) (a) and TDM2 ages (b) of the zircons from the Yuanshishan granites

      图  7  Zr+Nb+Ce+Y vs. FeOT/MgO(a)和Zr+Nb+Ce+Y vs. (K2O+Na2O)/CaO(b)图解(Whalen et al., 1987)

      Fig.  7.  Zr+Nb+Ce+Y vs. FeOT/MgO diagrams(a) and Zr+Nb+Ce+Y vs. (K2O+Na2O)/CaO diagrams for the Yuanshishan granites(b)

      图  8  Al2O3 vs. FeOT/(FeOT+MgO)图解(a)和Al2O3/(K2O/Na2O) vs. FeOT/(FeOT+MgO)图解(b)(Dall'Agnol and de'Oliveira, 2007)

      Fig.  8.  Al2O3 vs. FeOT/(FeOT+MgO) diagrams(a) and Al2O3/(K2O/Na2O) vs. FeOT/(FeOT+MgO) diagrams (b) for the Yuanshishan granites

      表  1  圆石山花岗岩LA-ICP-MS锆石U-Pb同位素分析数据

      Table  1.   LA-ICP-MS U-Pb isotope for zircons of the Yuanshishan granites

      点号 Th/U Th(10-6) U(10-6) 比值(经普通铅校正过的) 年龄(经普通铅校正过的)(Ma)
      207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
      1 0.34 414 1 214 0.047 77 0.001 0 0.192 09 0.004 1 0.029 06 0.000 2 88 49 178 3 185 1
      2 0.37 291 791 0.049 99 0.002 0 0.212 10 0.008 8 0.030 72 0.000 2 195 97 195 7 195 1
      3 0.15 517 3 559 0.047 30 0.000 7 0.209 62 0.003 5 0.032 01 0.000 3 64 34 193 3 203 2
      4 0.42 351 842 0.051 21 0.001 4 0.198 21 0.005 4 0.028 01 0.000 2 250 62 184 5 178 1
      5 0.43 155 358 0.053 28 0.003 2 0.204 65 0.012 0 0.027 86 0.000 4 341 139 189 10 177 2
      6 0.33 261 802 0.053 97 0.006 2 0.204 88 0.023 2 0.027 53 0.000 3 370 261 189 20 175 2
      7 0.68 391 577 0.061 31 0.001 2 0.674 46 0.013 4 0.079 56 0.000 6 650 41 523 8 494 3
      8 0.38 195 514 0.049 91 0.001 7 0.220 29 0.007 3 0.032 06 0.000 3 191 76 202 6 203 2
      9 0.29 358 1 248 0.054 03 0.003 0 0.235 08 0.012 4 0.031 55 0.000 5 372 126 214 10 200 3
      10 0.22 390 1 764 0.064 11 0.000 9 0.572 21 0.020 3 0.063 33 0.001 8 745 47 459 13 396 11
      11 0.51 552 1 087 0.079 24 0.001 0 1.956 51 0.033 3 0.178 21 0.002 2 1 178 24 1 101 11 1 057 12
      12 0.21 661 3 117 0.049 57 0.001 0 0.194 99 0.003 8 0.028 41 0.000 2 175 43 181 3 181 1
      13 0.28 908 3 269 0.046 28 0.000 7 0.182 63 0.003 1 0.028 48 0.000 2 12 31 170 3 181 1
      14 0.33 1 926 5 859 0.047 42 0.001 1 0.184 00 0.004 2 0.028 09 0.000 2 70 50 171 4 179 1
      15 0.42 288 690 0.047 30 0.001 3 0.176 90 0.005 1 0.027 04 0.000 3 65 61 165 4 172 2
      16 0.30 233 777 0.049 65 0.001 7 0.192 29 0.005 9 0.028 18 0.000 3 179 70 179 5 179 2
      17 0.42 342 824 0.046 84 0.001 3 0.177 35 0.004 6 0.027 50 0.000 2 41 54 166 4 175 1
      18 0.42 804 1 918 0.050 21 0.001 7 0.179 12 0.005 6 0.025 91 0.000 2 205 72 167 5 165 1
      下载: 导出CSV

      表  2  圆石山花岗岩锆石的Lu-Hf同位素分析结果

      Table  2.   Lu-Hf isotopic results for zircons of the Yuanshishan granites

      点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ T(Ma) εHf(t) 1σ THf1(Ga) THf2(Ga)
      01 0.023 623 1 0.000 64 0.282 68 0.000 013 185 0.82 0.5 0.80 1.29
      02 0.019 189 8 0.000 53 0.282 67 0.000 011 195 0.53 0.4 0.82 1.32
      03 0.037 283 0 0.000 97 0.282 75 0.000 010 203 3.52 0.4 0.71 1.14
      04 0.028 904 5 0.000 80 0.282 68 0.000 012 178 0.60 0.4 0.80 1.29
      05 0.015 244 8 0.000 44 0.282 68 0.000 011 177 0.44 0.4 0.80 1.30
      06 0.022 838 5 0.000 65 0.282 62 0.000 013 175 -1.68 0.5 0.89 1.44
      07 0.027 042 1 0.000 74 0.282 21 0.000 010 494 -9.16 0.3 1.46 2.34
      08 0.018 991 9 0.000 55 0.282 67 0.000 011 203 1.74 0.4 0.78 1.26
      09 0.020 045 5 0.000 57 0.282 62 0.000 009 200 -0.94 0.3 0.88 1.42
      10 0.024 360 6 0.000 68 0.282 50 0.000 011 396 -0.01 0.4 1.01 1.63
      11 0.030 998 2 0.000 88 0.282 09 0.000 012 1 178 1.33 0.4 1.63 2.61
      12 0.030 248 4 0.000 83 0.282 69 0.000 010 181 0.81 0.4 0.80 1.28
      13 0.032 045 2 0.000 91 0.282 69 0.000 012 181 0.83 0.4 0.80 1.28
      14 0.052 384 5 0.001 46 0.282 70 0.000 009 179 1.17 0.3 0.79 1.25
      15 0.017 786 9 0.000 51 0.282 63 0.000 010 172 -1.33 0.4 0.87 1.41
      16 0.017 479 9 0.000 50 0.282 69 0.000 012 179 1.01 0.4 0.78 1.27
      17 0.018 840 3 0.000 56 0.282 65 0.000 009 175 -0.63 0.3 0.85 1.37
      18 0.026 798 1 0.000 76 0.282 69 0.000 010 165 0.75 0.3 0.79 1.27
      下载: 导出CSV

      表  3  圆石山花岗岩主量元素(%)和微量元素(10-6)分析结果

      Table  3.   Chemical compositions of the Yuanshishan granites

      样品 花岗岩 镁铁质包体
      N035-1 N035-2 N035-3 N035-4 N035-8 N036-1 N036-2 N035-5 N035-6 N035-7 N035-9
      SiO2 71.07 73.36 70.30 70.99 74.06 72.92 72.99 59.31 62.37 60.07 56.12
      Al2O3 14.62 13.48 14.88 14.72 13.05 13.84 13.47 16.02 12.16 16.61 15.87
      Fe2O3 0.66 0.05 0.15 1.35 1.15 0.91 0.10 0.88 0.13 0.67 1.66
      FeO 2.06 2.68 3.07 1.79 1.70 1.64 2.69 9.32 9.00 6.86 7.87
      CaO 0.94 1.01 1.11 1.12 1.06 0.90 0.91 2.94 2.77 4.09 4.42
      MgO 0.22 0.22 0.27 0.26 0.25 0.17 0.18 1.33 4.29 2.02 2.53
      K2O 6.67 5.53 6.11 5.81 5.01 5.46 5.73 3.56 4.10 2.66 3.18
      Na2O 3.20 3.10 3.38 3.38 3.16 3.36 3.29 3.64 2.20 3.80 3.30
      TiO2 0.150 0.150 0.200 0.190 0.166 0.122 0.120 0.910 0.990 1.080 1.480
      P2O5 0.04 0.04 0.06 0.06 0.06 0.03 0.03 0.41 0.32 0.52 0.56
      MnO 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.19 0.16 0.12 0.19
      Total 99.68 99.66 99.59 99.72 99.71 99.39 99.56 98.51 98.49 98.51 97.18
      Li 108.0 99.2 120.0 114.0 112.0 122.0 120.0 575.0 459.0 268.0 350.0
      Be 10.10 9.05 9.42 10.60 8.05 7.19 7.36 16.00 7.55 5.72 10.20
      Sc 5.67 5.96 6.98 7.30 6.78 6.19 6.21 24.30 20.90 10.40 15.40
      V 11.30 10.70 12.40 12.50 12.30 9.03 9.59 64.70 117.00 109.00 160.00
      Cr 19.90 17.40 12.20 6.92 7.32 12.80 20.50 9.75 338.0 0.87 14.60
      Co 2.30 2.39 2.36 2.47 2.08 1.59 2.12 10.00 27.20 13.20 18.00
      Ni 6.80 3.23 3.61 3.21 2.99 3.09 3.97 5.23 138.00 5.18 7.61
      Cu 7.43 6.19 6.72 6.00 4.94 5.65 9.02 7.95 9.64 22.30 24.80
      Zn 46.9 43.1 53.0 52.8 50.6 34.8 42.1 281.0 247.0 156.0 197.0
      Ga 29.1 28.1 30.7 28.9 27.1 28.0 27.8 37.3 29.2 27.0 34.0
      Rb 388 436 403 390 362 406 426 676 719 392 565
      Sr 55.7 95.6 87.3 69.9 71.0 52.6 58.6 61.0 143.0 404.0 401.0
      Y 61.9 70.4 68.8 63.3 48.0 79.6 95.2 109.0 82.1 62.7 88.6
      Zr 172 183 198 180 148 136 165 531 278 311 311
      Nb 51.4 37.0 40.0 40.1 48.0 44.1 49.2 92.2 71.0 43.2 70.1
      Mo 1.17 1.04 1.18 1.20 0.73 0.58 0.55 0.28 1.22 1.00 1.88
      Cd 0.07 0.18 0.08 0.10 0.06 0.11 0.15 0.34 0.18 0.40 0.26
      In 0.11 0.09 0.09 0.12 0.10 0.06 0.06 0.41 0.27 0.17 0.38
      Sb 0.58 0.56 0.81 0.84 0.65 0.51 0.59 0.25 0.23 0.36 0.72
      Cs 36.1 36.5 41.5 42.7 38.0 21.4 22.2 131.0 139.0 32.4 78.4
      Ba 537 525 778 423 333 316 357 491 387 898 801
      La 51.3 59.8 49.9 55.0 57.6 44.0 44.2 37.8 49.7 51.3 65.7
      Ce 114.0 123.0 105.0 116.0 117.0 93.1 93.7 82.1 105.0 94.1 120.0
      Pr 13.2 15.3 12.7 14.0 14.8 11.7 11.7 11.6 13.2 12.7 16.1
      Nd 52.5 60.6 50.5 53.9 59.2 47.9 48.7 52.4 56.6 54.3 67.7
      Sm 13.2 14.4 13.0 13.6 14.2 13.0 13.8 18.8 15.7 12.5 16.6
      Eu 0.840 0.790 1.070 0.780 0.680 0.650 0.640 0.470 0.799 1.790 2.060
      Gd 11.3 12.0 11.4 11.1 11.4 12.2 13.1 19.5 14.7 11.2 15.9
      Tb 2.13 2.35 2.34 2.07 1.96 2.52 2.68 3.98 2.92 2.18 2.94
      Dy 12.2 13.3 13.1 11.8 11.1 15.0 17.0 21.9 16.8 12.7 17.4
      Ho 2.25 2.49 2.39 2.12 1.84 2.89 3.33 3.88 3.05 2.26 3.22
      Er 6.31 7.03 6.87 6.01 4.98 8.01 9.51 10.10 8.10 6.35 8.67
      Tm 1.10 1.21 1.20 1.03 0.82 1.40 1.67 1.74 1.33 1.06 1.45
      Yb 6.32 7.18 6.73 6.14 4.39 8.06 9.84 9.95 7.30 5.83 8.04
      Lu 0.95 1.11 1.06 0.97 0.64 1.21 1.51 1.51 1.09 0.90 1.24
      Hf 7.03 7.45 8.11 7.23 6.23 5.80 7.52 14.10 8.72 7.74 8.57
      Ta 6.05 5.22 5.14 5.04 5.89 7.06 6.93 8.15 5.81 3.26 6.66
      W 5.60 3.25 3.41 5.68 7.15 3.43 4.32 2.54 2.71 2.09 6.33
      Tl 2.52 2.07 2.30 2.18 1.94 2.32 2.49 4.52 4.58 2.40 3.43
      Pb 42.6 37.4 42.2 38.7 36.6 42.2 47.1 31.1 10.8 17.3 16.6
      Bi 0.24 0.88 0.35 0.60 0.52 0.25 0.25 0.59 0.17 0.40 2.41
      Th 35.1 40.0 39.3 39.3 39.8 38.7 40.5 14.9 26.9 17.6 24.6
      U 14.30 13.50 14.20 12.70 18.30 12.00 13.40 6.43 8.70 12.10 12.70
      104×Ga/Al 3.76 3.94 3.90 3.71 3.92 3.82 3.90 4.40 4.53 3.07 4.05
      Zr+Nb+Ce+Y 399 413 411 399 361 352 403 814 536 511 589
      T(℃) 814 820 824 816 799 796 811 852 773 775 745
      下载: 导出CSV

      表  4  圆石山花岗岩Sr-Nd同位素分析结果

      Table  4.   Sr-Nd isotopic compositions of the Yuanshishan granites

      样品号 Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd T(Ma) εNd(t) TDM2(Ga)
      N035-2 14.4 60.6 0.144 6 0.512 272 0.000 007 178.5 -5.95 1.46
      N035-4 13.6 53.9 0.153 6 0.512 354 0.000 007 178.5 -4.55 1.34
      N036-1 13.0 47.9 0.165 2 0.512 203 0.000 012 178.5 -7.77 1.61
      N036-2 13.8 48.7 0.172 5 0.512 307 0.000 007 178.5 -5.90 1.45
      N035-5 18.8 52.4 0.218 4 0.512 414 0.000 005 178.5 -4.87 1.37
      N035-6 15.7 56.6 0.168 8 0.512 382 0.000 007 178.5 -4.36 1.33
      N035-7 12.5 54.3 0.140 1 0.512 437 0.000 007 178.5 -2.63 1.19
      样品号 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr T(Ma) (87Sr/86Sr)i
      N035-2 436 95.6 12.862 0.740 035 0.000 013 178.5 0.707 3
      N035-4 390 69.9 15.734 0.741 760 0.000 008 178.5 0.701 7
      N036-1 406 52.6 21.767 0.759 676 0.000 010 178.5 0.704 2
      N036-2 426 58.6 20.501 0.763 087 0.000 014 178.5 0.710 8
      N035-5 676 61.0 31.252 0.785 050 0.000 009 178.5 0.705 4
      N035-6 719 143.0 14.179 0.743 271 0.000 010 178.5 0.707 1
      N035-7 392 404.0 2.736 0.711 940 0.000 011 178.5 0.705 0
      注: TDM值采用(Depaolo et al., 1991)两阶段模式年龄.
      下载: 导出CSV
    • [1] Anderson, J.L., Morrison, J., 2005. Ilmenite, Magnetite, and Peraluminous Mesoproterozoic Anorogenic Granites of Laurentia and Baltica. Lithos, 80(1-4): 45-60. doi: 10.1016/J.Lithos.2004.05.008
      [2] Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      [3] Blichert, T.J., Albarede, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. doi: 10.1016/S0012-821X(97)00040-X
      [4] Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. doi: 10.1016/J.Lithos.2006.12.007
      [5] Chappell, B.W., White, A.J.R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. doi: 10.1046/J.1440-0952.2001.00882.X
      [6] Chen, J.L., Guo, Y.S., Fu, S.M., 2004. The Research Headway to Granitoid-Classification Review and Synthesis of ISMA Granitoid. Acta Geologica Gansu, 13(1): 67-73(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSDZ200401008.htm
      [7] Chen, P.R., Hua, R.M., Zhang, B.T., et al., 2002. Early Yanshanian Post-Orogenic Granitoids in the Nanling Region: Petrological Constrains and Geodynamic Setting. Science in China(Series D), 45(8): 755-768. doi: 10.1007/BF02878432
      [8] Chen, P.R., Zhou, X.M., Zhang, W.L., et al., 2004. Petrogenesis and Significance of Early Yanshanian Syenite-Granite Complex in Eastern Nanling Range. Science in China(Series D), 34(6): 493-503(in Chinese).
      [9] Chen, R., Xing, G.F., Yang, Z.L., et al., 2007. Early Jurassic Zircon SHRIMP U-Pb Age of the Dacitic Volcanic Rocks in the Southeastern Zhejiang Province Determined Firstly and Its Geological Significances. Geological Review, 53(1): 31-35(in Chinese with English abstract). http://www.researchgate.net/publication/292408832_Early_Jurassic_zircon_SHRIMP_U-Pb_age_of_the_dacitic_volcanic_rocks_in_the_southeastern_Zhejiang_Province_determined_firstly_and_its_geological_significances
      [10] Chen, W.F., Chen, P.R., Huang, H.Y., et al., 2007. Chronological and Geochemical Studies of Granite and Enclave in Baimashan Pluton, Hunan, South China. Science in China (Series D), 37(7): 873-893(in Chinese). doi: 10.1007/s11430-007-0073-1
      [11] Dall'Agnol, R., de'oliveira, D.C., 2007. Oxidized, Magnetite-Series, Rapakivi-Type Granites of Carajás, Brazil: Implications for Classification and Petrogenesis of A-Type Granites. Lithos, 93(3-4): 215-233. doi: 10.1016/J.Lithos.2006.03.065
      [12] Dall'Agnol, R., Rämö, O.T., de Magalhaes, M.S., 1999. Petrology of the Anorogenic, Oxidised Jamon and Musa Granites, Amazonian Craton: Implications for the Genesis of Proterozoic A-Type Granites. Lithos, 46(3): 431-462. doi: 10.1016/S0024-4937(98)0007-2
      [13] Dall'Agnol, R., Teixeira, N.P., Rämö, O.T., et al., 2005. Petrogenesis of the Paleoproterozoic Rapakivi A-Type Granites of the Archean Carajás Metallogenic Province, Brazil. Lithos(Ilmari Haapala), 80(1-4): 101-129. doi: 10.1016/J.Lithos.2004.03.058
      [14] Depaolo, D.J., Linn, A.M., Schuburt, G., 1991. The Continental Crustal Age Distribution: Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2): 2071-2088. doi: 10.1029/90JB02219
      [15] Ding, X., Chen, P.R., Chen, W.F., et al., 2005. Single Zircon LA-ICPMS U-Pb Dating of Weishan Granite(Hunan, South China) and Its Petrogenesis Significance. Science in China (Series D), 35(7): 606-616(in Chinese).
      [16] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      [17] Frost, C.D., Frost, B.R., 1997. Reduced Rapakivi-Type Granites: The Tholeiite Connection. Geology, 25(7): 647-650. doi:10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2
      [18] Frost, C.D., Frost, B.R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39-53. doi: 10.1093/Petrology/Egq070
      [19] Frost, C.D., Frost, B.R., Chamberlain, K.R., et al., 1999. Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA: A Reduced, Rapakivi-Type Anorogenic Granite. Journal of Petrology, 40(12): 1771-1802. doi: 10.1093/Petroj/40.12.1771
      [20] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
      [21] He, Z.Y., Xu, X.S., Niu, Y.L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. doi: 10.1016/J.Lithos.2010.08.016
      [22] He, Z.Y., Xu, X.S., Wang, X.L., et al., 2008. Geochronology and Geochemistry of Shoshonitic Volcanics in Southern Jiangxi Province. Acta Petrologica Sinica, 24(11): 2524-2536(in Chinese with English abstract).
      [23] Huang, J.Q., Ren, J.X., Jing, C.F., et al., 1980. Geotectonic Evolution of China. Science Press, Beijing(in Chinese).
      [24] Ji, C.Y., Wu, J.H., 2010. The SHRIMP Zircon U-Pb Dating of Felsic Volcanic Rocks and Its Geological Significance from Yutian Group in Southern Jiangxi. Journal of East China Institute of Technology, 33(2): 131-138(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-east-china-university-technology-natural-science_thesis/0201249522307.html
      [25] King, P.L., White, A.J.R., Chappell, B.W., 1997. Characterization and Origin of Aluminous A Type Granites of the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. doi: 10.1093/Petroj/38.3.371
      [26] Li, X.H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. doi: 10.1016/S1367-9120(99)00060-7
      [27] Li, X.H., Chen, Z.G., Liu, D.Y., et al., 2003. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin and Tectonic Significance. International Geology Review, 45(10): 898-921. doi: 10.2747/0020-6814.45.10.898
      [28] Li, X.H., Chung, S.L., Zhou, H.W., et al., 2004. Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi: 40Ar/39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for Tectonic Evolution of SE China. In: Malpas, J., Fletcher, C.J., Aitchison, J.C., eds., Aspects of the Tectonic Evolution of China. The Geological Society, Special Publications, London, 226: 193-215. doi: 10.1144/GSL.SP.2004.226.01.11
      [29] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm
      [30] Li, X.H., Li, W.X., Li, Z.X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 62(9): 981-991(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW200714000.htm
      [31] Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km-Wide Intra-Continental Orogen and Post-Orogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35: 179-182. doi: 10.1130/G23193A.1
      [32] Li, Y.J., Wei, J.H., Yao, C.L., et al., 2010. Genetic Relationship of the Huaixi Copper-Gold Deposit and the Caomen Alkaline Granite, Southeastern Zhejiang Province, China: Constraint from Geochronologies. Earth Science-Journal of China University of Geosciences, 35(4): 585-596(in Chinese with English abstract). doi: 10.3799/dqkx.2010.074
      [33] Liu, C.S., Chen, X.M., Chen, P.R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for A Type Rock Suites. Geological Journal of China Universities, 9(4): 573-591(in Chinese with English abstract). http://www.researchgate.net/publication/292052945_Subdivision_discrimination_criteria_and_genesis_for_A-type_rock_suites
      [34] Liu, Y., Li, T.D., Xiao, Q.H., et al., 2010. New Chronology of the Ningyuan Alkali Basalt in Southern Hunan, China: Evidence from LA-ICP-MS Zircon U-Pb Dating. Geological Bulletin of China, 29(6): 833-841(in Chinese with English abstract). http://www.researchgate.net/publication/282766817_New_chronology_of_the_Ningyuan_alkali_basalt_in_southern_Hunan_China_Evidence_from_LA-ICP-MS_zircon_U-Pb_dating
      [35] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/J.Chemgeo.2008.08.004
      [36] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Specical Publication, Berkeley.
      [37] Meng, L.F., Li, Z.X., Chen, H.L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132-133: 127-140. doi: 10.1016/J.Lithos.2011.11.022
      [38] Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth Science Review, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
      [39] Ni, Z.Y., Li, N., Zhang, H., et al., 2009. Sr-Nd-Pb Isotope Constrains on the Source of Ore-Forming Elements of the Dahu Au-Mo Deposit, Henan Province. Acta Petrologica Sinica, 25(11): 2823-2832(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200911014.htm
      [40] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rock. Journal of Petrology, 25(4): 956-983. doi: 10.1093/Petrology/25.4.956
      [41] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions of Mineralogy and Petrology, 58(1): 63-8l. doi: 10.1007/BF00384745
      [42] Qiu, J.S., Mcinnes, B.I.A., Jiang, S.Y., et al., 2005. Geochemistry of the Mikengshan Pluton in Huichang County, Jiangxi Province and New Recognition about Its Genetic Type. Geochimica, 34(1): 20-32(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200501002.htm
      [43] Qiu, J.S., Zhou, J.C., Zhang, G.H., et al., 2002. Geochemistry and Petrogenesis of Precambrian Granitoid Rocks in Northern Guangxi. Acta Petrologica et Mineralogica, 21(3): 197-208(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254453642.html
      [44] Qu, X.M., Hou, Z.Q., Li, Y.G., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. doi: 10.1016/J.Lithos.2004.01.003
      [45] Sun, T., Zhou, X.M., 2002. Late Mesozoic Extension in Southern China: Petrologic Symbols. Journal of Nanjing University(Natural Sciences), 38(6): 737-746(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ200206001.htm
      [46] Wang, D.Z., Xie, L., 2008. Magma Mingling: Evidence from Enclaves. Geological Journal of China Universities, 14(1): 16-21(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200801004.htm
      [47] Wang, L., Hu, M.A., Yang, Z., et al., 2010. Geochronology and Its Geological Implications of LA-ICP-MS Zircon U-Pb Dating of Granodiorite Porphyries in Dabaoshan Polymetallic Ore Deposit, North Guangdong Province. Earth Science-Journal of China University of Geosciences, 35(2): 175-185(in Chinese with English abstract). doi:10.3799/ dqkx.2010.018
      [48] Wang, Q., Zhao, Z.H., Jian, P., et al., 2005. Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constraints for Late-Mesozoic Tectonic Evolution. Acta Petrologica Sinica, 21(3): 795-808(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200503020.htm
      [49] Wang, Q., Zhao, Z.H., Xiong, X.L., 2000. The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica et Mineralogica, 19(4): 297-306(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200004001.htm
      [50] Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006. Petrogenesis of the Neoproterozoic Strongly Peraluminous Granitiods from Northern Guangxi: Constraints from Zircon Geochronology and Hf Isotopes. Acta Petrologica Sinica, 22(2): 326-342(in Chinese with English abstract). http://www.researchgate.net/publication/279707104_Petrogenesis_of_the_Neoproterozoic_strongly_peraluminous_granitoids_from_Northern_Guangxi_Constraints_from_zircon_geochronology_and_Hf_isotopes
      [51] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X
      [52] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202
      [53] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm
      [54] Xie, L., Wang, R.C., Chen, X.M., et al., 2005. Th-Rich Zircon from Peralkaline A-Type Granite: Mineralogical Features and Petrological Implications. Chinese Science Bulletin, 50(8): 809-817. doi: 10.1007/BF03183683
      [55] Xie, X., Xu, X.S., Zou, H.B., et al., 2005. Early J2 Basalts in SE China: Incipience of Large-Scale Late Mesozoic Magmatism. Science in China(Series D), 35(7): 587-605(in Chinese).
      [56] Yan, P.Y., Zhou, M.F., Song, H.L., et al., 2003. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China). Tectonophysics, 361(3-4): 239-254. doi: 10.1016/S0040-1951(02)00646-7
      [57] Yang, C., Zhu, J.C., Zhang, P.H., et al., 2006. Geochemical Characteristics and Genesis of Dioritic Enclaves in Lisong Granite, NE Guangxi Province. Geological Journal of China Universities, 12(3): 310-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200603004.htm
      [58] Yu, X.Q., Di, Y.J., Wu, G.G., et al., 2009. The Early Jurassic Magmatism in Northern Guangdong Province, Southeastern China: Constraints from SHRIMP Zircon U-Pb Dating of Xialan Complex. Science in China(Series D), 39(6): 681-693(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG200904005
      [59] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircon from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS. Chinese Science Bulletin, 48(14): 1511-1520(in Chinese). doi: 10.1360/csb2003-48-14-1511
      [60] Zhang, Q., Pan, G.Q., Li, C.D., et al., 2007. Granitic Magma Mixing versus Basaltic Magma Mixing: New Viewpoints on Granitic Magma Mixing Process: Some Crucial Question on Granites Study(1). Acta Petrologica Sinica, 23(5): 1141-1152(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200705027.htm
      [61] Zhang, Q., Wang, Y., Pan, G.Q., et al., 2008. Sources of Granites: Some Crucial Questions on Granite Study(4). Acta Petrologica Sinica, 24(6): 1193-1204(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200806004.htm
      [62] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontier, 16(1)234-247(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY200901033.htm
      [63] Zhou, X.M., 2003. My Thinking about Granite Geneses of South China. Geological Journal of China Universities, 9(4): 556-565(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200304008.htm
      [64] Zhou, X.M., 2007. Petrogenesis of Late-Mesozoic Granites in the Nanling Ranges and Lithospheric Dynamics Evolution. Science Press, Beijing(in Chinese).
      [65] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004
      [66] 陈建林, 郭原生, 付善明, 2004. 花岗岩研究进展—ISMA花岗岩类分类综述. 甘肃地质学报, 13(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200401008.htm
      [67] 陈培荣, 周新民, 张文兰, 等, 2004. 南岭东段燕山早期正长岩-花岗岩杂岩的成因和意义. 中国科学(D辑), 34(6): 493-503. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406000.htm
      [68] 陈荣, 邢光福, 杨祝良, 等, 2007. 浙东南英安质火山岩早侏罗世锆石SHRIMP年龄的首获及其地质意义. 地质论评, 53(1): 31-35. doi: 10.3321/j.issn:0371-5736.2007.01.005
      [69] 陈卫峰, 陈培荣, 黄宏业, 等, 2007. 湖南白马山岩体花岗岩及其包体的年代学和地球化学研究. 中国科学(D辑), 37(7): 873-893. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200707002.htm
      [70] 丁兴, 陈培荣, 陈卫锋, 等, 2005. 湖南沩山花岗岩中锆石LA-ICPMS U-Pb定年: 成岩启示和意义. 中国科学(D辑), 35(7): 606-616. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200507001.htm
      [71] 贺振宇, 徐夕生, 王孝磊, 等, 2008. 赣南橄榄安粗质火山岩的年代学与地球化学. 岩石学报, 24(11): 2524-2536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811008.htm
      [72] 黄汲清, 任纪舜, 姜春发, 等, 1980. 中国大地构造及演化. 北京: 科学出版社.
      [73] 冀春雨, 巫建华, 2010. 江西南部余田群长英质火山岩SHRIMP锆石U-Pb年龄及其地质意义. 东华理工大学学报(自然科学版), 33(2): 131-138. doi: 10.3969/j.issn.1674-3504.2010.02.003
      [74] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
      [75] 李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 62 (9) : 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001
      [76] 李艳军, 魏俊浩, 姚春亮, 等, 2010. 浙东南怀溪铜金矿床与曹门碱性花岗岩体成因关系的年代学制约. 地球科学—中国地质大学学报, 35(4): 585-596. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004012.htm
      [77] 刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011
      [78] 刘勇, 李廷栋, 肖庆辉, 等, 2010. 湘南宁远地区碱性玄武岩形成时代的新证据: 锆石LA-ICP-MS U-Pb定年. 地质通报, 29(6): 833-841. doi: 10.3969/j.issn.1671-2552.2010.06.005
      [79] 倪智勇, 李诺, 张辉, 等, 2009. 河南大湖金钼矿床成矿物质来源的锶钕铅同位素约束. 岩石学报, 25(11): 2823-2832. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911014.htm
      [80] 邱检生, Mcinnes, B.I.A., 蒋少涌, 等, 2005. 江西会昌密坑山岩体的地球化学及其成因类型的新认识. 地球化学, 34(1): 20-32. doi: 10.3321/j.issn:0379-1726.2005.01.003
      [81] 邱检生, 周金城, 张光辉, 等, 2002. 桂北前寒武花岗岩类岩石的地球化学与成因. 岩石矿物学杂志, 21(3): 197-208. doi: 10.3969/j.issn.1000-6524.2002.03.001
      [82] 孙涛, 周新民, 2002. 中国东南部晚中生代伸展应力体制的岩石学标志. 南京大学学报(自然科学版), 38(6): 737-746. doi: 10.3321/j.issn:0469-5097.2002.06.002
      [83] 王德滋, 谢磊, 2008. 岩浆混合作用: 来自岩石包体的证据. 高校地质学报, 14(1): 16-21. doi: 10.3969/j.issn.1006-7493.2008.01.002
      [84] 王磊, 胡明安, 杨振, 等, 2010. 粤北大宝山矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地球科学—中国地质大学学报, 35(2): 175-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002001.htm
      [85] 王强, 赵振华, 简平, 等, 2005. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约. 岩石学报, 21(3): 795-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503020.htm
      [86] 王强, 赵振华, 熊小林, 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297-306. doi: 10.3969/j.issn.1000-6524.2000.04.002
      [87] 王孝磊, 周金城, 邱检生, 等, 2006. 桂北新元古代强过铝花岗岩的成因: 锆石年代学和Hf同位素制约. 岩石学报, 22(2): 326-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602007.htm
      [88] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
      [89] 谢昕, 徐夕生, 邹海波, 等, 2005. 中国东南部晚中生代大规模岩浆作用序幕: J2早期玄武岩. 中国科学(D辑), 35(7): 587-605. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200507000.htm
      [90] 杨策, 朱金初, 张佩华, 等, 2006. 广西姑婆山里松花岗岩中闪长质包体的地球化学特征及其成因探讨. 高校地质学报, 12(3): 310-318. doi: 10.3969/j.issn.1006-7493.2006.03.003
      [91] 余心起, 狄永军, 吴淦国, 等, 2009. 粤北存在早侏罗世的岩浆活动—来自霞岚杂岩SHRIMP锆石U-Pb年代学的证据. 中国科学(D辑), 39(6): 681-693. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200906001.htm
      [92] 袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
      [93] 张旗, 潘国强, 李承东, 等, 2007. 花岗岩混合问题: 与玄武岩对比的启示—关于花岗岩研究的思考之一. 岩石学报, 23 (5): 1141-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705027.htm
      [94] 张旗, 王焰, 潘国强, 等, 2008. 花岗岩源岩问题—关于花岗岩研究的思考之四. 岩石学报, 24(6): 1193-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806004.htm
      [95] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
      [96] 周新民, 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009
      [97] 周新民, 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社.
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  3569
    • HTML全文浏览量:  135
    • PDF下载量:  552
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-07-30
    • 刊出日期:  2014-01-01

    目录

      /

      返回文章
      返回