Zircon U-Pb Age of Mafic-Ultramafic Rock from Pingchuan Region in Southern Sichuan and Its Geological Implications
-
摘要: 为探讨镁铁质-超镁铁质岩的岩石学特征及成岩成矿作用时间序列, 完善区域成岩成矿年代学格架, 对平川地区的镁铁质-超镁铁质岩进行了元素地球化学分析和LA-ICP-MS锆石U-Pb定年.测试结果显示, 黄草坪辉长岩成岩年龄为259.7±1.2 Ma, 其捕获锆石结晶年龄为269.8±2.4 Ma, 辉绿(玢)岩等次火山岩参考成岩年龄为248± Ma, 其变质锆石年龄为67± Ma.研究结果表明, 平川地区的镁铁质-超镁铁质岩产出于大陆裂谷环境, 岩浆源区来自上地幔尖晶石相二辉橄榄岩, 为一套同源异相有利于铁矿化形成的富钠质拉斑玄武质岩石系列.岩浆活动开始孕育时间不晚于269.8±2.4 Ma, 大规模岩浆活动发生于259.7±1.2 Ma, 其约束了岩浆分异型和火山喷发(溢)沉积型矿化的成矿时间, 次火山岩的成岩年龄约束了次火山热液型矿化的成矿时间上限, 变质锆石U-Pb年龄记录了平川地区经历了喜马拉雅期陆内造山作用.平川地区构造岩浆活动具有爆发性、阶段性和成矿专属性等特点, 镁铁质-超镁铁质岩的形成可能与岩石圈的大规模减薄作用有关, 攀西地区海西-印支期的成岩-成矿作用为同源岩浆受区域统一深部地球动力学背景约束演化的异相产物.Abstract: LA-ICP-MS zircon U-Pb dating and elements geochemical analysis has been carried out for mafic-ultramafic rock from Pingchuan to discuss the petrology characteristics and the time series of diagenesis-mineralization in Pingchuan region and further improve the geochronological framework of diagenesis-mineralization of the Panxi area. The test results show that Huangcaoping gabbro formed in 259.7±1.2 Ma and its capture zircon's crystallization age is 269.8±2.4 Ma, and the subvolcanic's reference diagenetic age is 248± Ma and its metamorphic zircon age is 67± Ma. The results indicate that mafic-ultramafic rock in Pingchuan region is a set of homologous phase sodium-rich tholeiitic rock series, conduciving to the formation of iron-mineralization, outputting in the continental rift environment, magma source coming from the upper mantle spinel lherzolite. The magmatic activity started no later than 269.8±2.4 Ma, and the large-scale magmatic activity occurred at 259.7±1.2 Ma, which constrained the mineralization time of magmatic profiled and volcanic eruptions (underflow) sedimentary, and the subvolcanic diagenetic age limited the upper mineralization time of sub-volcanic hydrothermal, and the metamorphic zircon U-Pb age recorded that Pingchuan region experienced Himalayan intracontinental orogeny. The tectonic-magmatic activity of Pingchuan region is featured with being explosive, phased and metallogenic; the formation of mafic-ultramafic rock in Pingchuan region is probably related to the large-scaled lithospheric thinning; diagenesis-mineralization in Hercynian-Indosinian in Panxi area is the comagmatic product of different phases evolution, controlled by regional uniform deep geodynamics.
-
Key words:
- zircon /
- mafic-ultramafic rock /
- diagenesis-mineralization /
- pingchuan region /
- geochemistry
-
图 10 (Tb/Yb)PM和(Yb/Sm)PM图解(底图据张招崇等, 2006)
Fig. 10. Relation of (Tb/Yb)PM and (Yb/Sm)PM
图 11 (Th/Ta)PM和(La/Nb)PM图解(底图据Neal et al., 2002)
Fig. 11. Relation of (Th/Ta)PM and (La/Nb)PM
表 1 平川地区镁铁质-超镁铁质岩常量元素含量及特征值
Table 1. Table of eigenvalue and content of major elements of mafic-ultramafic rock in Pingchuan region
样号 岩石类型 化学成分(%) 特征值 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 FeO′ ZK21101-2 细粒玄武岩 51.57 2.19 14.47 3.30 7.21 0.20 6.94 10.90 2.15 0.84 0.24 10.18 ZK21201-9 块状玄武岩 50.31 1.97 14.03 2.87 8.30 0.19 8.63 9.71 3.02 0.73 0.24 10.88 ZK21503-1 含杏仁体玄武岩 53.56 1.77 14.62 3.10 7.21 0.18 6.70 8.79 2.68 1.17 0.21 10.00 ZK22001-1 灰绿色玄武岩 50.14 2.30 14.28 5.81 5.98 0.21 6.26 11.83 1.90 1.04 0.25 11.21 ZK22001-3 杏仁体玄武岩 53.96 2.06 14.52 2.09 7.19 0.18 5.65 9.94 4.10 0.06 0.24 9.07 ZK22101-2 含杏仁体玄武岩 52.32 2.15 14.88 3.34 7.22 0.18 6.88 8.42 4.29 0.07 0.26 10.22 ZK22101-10 块状玄武岩 50.74 2.21 14.61 3.64 7.76 0.25 7.52 8.34 3.12 1.58 0.24 11.03 ZK22101-14 铁质凝灰岩 44.79 1.15 11.75 11.81 7.95 0.36 8.50 11.31 1.88 0.07 0.42 18.58 LZC-3 斑状玄武岩 49.62 1.99 13.97 5.01 7.05 0.21 7.57 11.76 2.03 0.52 0.26 11.56 CK10201-1 粗粒辉长岩 51.44 2.93 14.91 5.53 5.27 0.14 4.93 9.07 5.01 0.58 0.18 10.25 CK10201-4 细粒辉长岩 50.41 1.95 14.75 2.56 8.25 0.19 6.85 9.57 4.73 0.54 0.20 10.56 CK10201-6 中粗粒辉长岩 50.46 1.70 15.59 3.85 5.68 0.22 7.87 9.69 3.89 0.91 0.15 9.15 CK10201-7 中-细粒矿化辉长岩 47.19 1.52 14.56 3.00 11.23 0.13 7.35 11.28 3.15 0.46 0.14 13.93 CK10201-8 中-细粒辉长岩 49.94 1.59 15.36 3.94 5.63 0.13 7.77 11.53 3.39 0.58 0.14 9.17 DPZ-1 中-粗粒辉长岩 49.90 0.95 15.84 2.50 7.00 0.19 9.06 10.30 2.92 1.25 0.09 9.24 DPZ-3 粗粒辉长岩 49.93 1.98 12.95 5.81 7.23 0.22 7.15 10.29 3.81 0.36 0.28 12.46 DPZ-71-2 辉绿辉长岩 49.07 2.73 15.53 2.92 10.19 0.20 5.92 8.49 3.86 0.86 0.24 12.81 DPZ-74 中细粒辉长岩 50.55 1.72 12.85 4.36 5.26 0.16 9.14 11.12 4.38 0.30 0.16 9.19 ZK3002-5-1 细粒辉长岩 52.48 0.89 16.31 3.12 5.99 0.17 6.68 11.30 2.63 0.36 0.07 8.79 ZK3002-14 中-粗粒矿化辉长岩 46.07 2.71 13.05 9.24 9.34 0.19 5.97 10.13 2.69 0.55 0.05 17.65 ZK3002-18 矿化粗粒辉长岩 44.55 2.26 13.00 2.73 18.10 0.19 5.50 10.01 2.92 0.68 0.07 20.56 ZK3002-19 中粗粒辉长岩 52.08 1.03 15.11 3.89 4.97 0.18 6.69 11.85 3.25 0.88 0.07 8.47 ZK3002-20 矿化细粒辉长岩 43.43 2.57 13.36 9.63 10.81 0.20 6.90 10.50 2.15 0.40 0.05 19.48 K-8 辉绿岩 44.74 1.39 8.73 2.70 9.35 0.30 24.25 7.92 0.41 0.09 0.12 11.78 K-10 辉绿岩 46.42 0.01 9.08 1.58 12.06 0.17 23.44 7.01 0.01 0.12 0.10 13.48 K-14 辉绿岩 44.14 1.09 8.21 3.92 7.91 0.20 25.41 8.77 0.20 0.04 0.10 11.44 K-41 辉绿岩 44.88 1.20 9.05 3.01 8.43 0.17 23.78 8.56 0.52 0.30 0.10 11.14 K-244 辉绿岩 45.78 1.22 8.84 3.68 9.47 0.26 22.57 7.73 0.31 0.03 0.10 12.78 K-13 苦橄岩 44.93 1.22 9.41 3.84 7.61 0.20 22.20 9.07 1.12 0.31 0.09 11.06 K-15 苦橄岩 45.20 1.23 9.65 3.66 7.69 0.19 21.66 9.11 1.23 0.27 0.09 10.99 K-18 苦橄岩 44.19 1.04 8.27 2.92 8.78 0.20 25.22 7.88 1.19 0.22 0.09 11.41 K-246-2 苦橄岩 45.31 1.16 8.55 2.65 9.21 0.19 23.17 8.20 1.32 0.14 0.09 11.59 K-246-3 苦橄岩 46.05 1.13 8.86 3.04 9.09 0.20 21.65 8.32 1.31 0.21 0.12 11.83 K-171 苦橄岩 45.37 1.20 8.36 4.30 7.75 0.19 23.80 7.82 0.88 0.23 0.10 11.62 注:氧化物含量已换算成100%,分析数据由澳实分析检测(广州)有限公司测定. 表 2 平川地区镁铁质-超镁铁质岩微量元素含量及特征值
Table 2. Eigenvalues and contents of Trace elements of mafic-ultramafic rock in Pingchuan region
样号 岩石名称 元素(10-6) 特征值 Rb Ba Th U Ta Nb La Ce Pb Pr Sr Nd Zr Hf Sm Eu Dy Y Ho Yb Lu Gd Tb Er Tm ∑REE LREE/HREE δEu δCe ZK21101-2 细粒玄武岩 20.1 1140 2.2 0.5 1.06 17.4 18.2 37.7 4.5 5.15 503 22.7 136.0 3.7 5.40 1.97 4.90 23.9 0.91 2.14 0.32 5.45 0.89 2.52 0.35 108.60 5.21 1.10 0.94 ZK21201-9 块状玄武岩 23.3 660 2.4 0.6 1.26 20.9 21.0 44.5 3.3 5.42 487 22.6 142.5 3.8 5.33 1.72 4.88 27.3 1.02 2.30 0.31 5.95 0.95 2.78 0.39 119.15 5.41 0.93 1.00 ZK21503-1 含杏仁体玄武岩 43.1 280 2.0 0.5 0.98 15.0 21.8 43.5 5.7 5.57 397 22.9 123.0 3.4 5.09 1.73 4.27 21.6 0.78 1.81 0.26 5.33 0.76 2.21 0.29 116.30 6.40 1.01 0.94 ZK22001-1 灰绿色玄武岩 32.9 450 2.3 0.6 1.23 17.9 21.8 47.7 7.6 6.17 718 26.7 91.5 3.2 6.18 2.11 4.97 24.6 0.94 2.13 0.33 6.00 0.96 2.54 0.37 128.90 6.07 1.05 0.99 ZK22001-3 杏仁体玄武岩 2.8 110 1.9 0.5 1.11 17.3 18.8 42.1 5.0 5.74 426 25.5 115.5 3.3 5.88 2.24 4.83 23.4 0.93 2.19 0.31 5.84 0.92 2.51 0.35 118.14 5.61 1.16 0.98 ZK22101-2 含杏仁体玄武岩 2.2 90 2.5 0.7 1.18 18.5 24.3 50.5 4.9 6.21 376 26.0 177.5 4.7 6.00 2.05 4.93 26.4 1.04 2.21 0.30 6.21 1.02 2.67 0.36 133.80 6.14 1.02 0.98 ZK22101-10 块状玄武岩 44.6 1310 2.5 0.6 1.12 17.8 24.4 48.6 10.8 5.54 335 24.0 159.0 4.2 5.25 2.00 4.33 23.0 0.84 1.82 0.26 5.32 0.83 2.33 0.29 125.81 6.85 1.15 0.98 ZK22101-14 铁质凝灰岩 3.8 10000 3.9 4.2 0.63 11.4 51.1 72.6 160.5 6.40 807 22.9 100.5 2.7 4.46 4.46 4.19 25.0 0.87 2.22 0.34 4.84 0.77 2.54 0.35 178.04 10.04 2.92 0.84 LZC-3 斑状玄武岩 11.8 190 1.3 0.3 0.84 12.9 13.8 30.4 3.8 4.59 355 21.1 87.3 2.7 5.31 1.89 5.23 25.7 0.97 2.30 0.32 5.72 0.94 2.69 0.38 95.64 4.16 1.04 0.93 CK10201-1 中粗粒辉长岩 15.2 540 3.1 0.3 1.53 22.9 15.2 33.1 2.3 3.98 450 19.8 51.5 2.0 4.81 1.85 5.10 29.5 1.06 2.61 0.41 5.32 0.91 3.08 0.43 97.66 4.16 1.11 1.02 CK10201-4 细粒辉长岩 14.5 360 3.1 0.5 1.22 19.0 20.4 46.1 14.4 5.23 398 21.0 113.5 3.4 4.99 1.49 4.75 25.6 0.88 2.26 0.33 5.42 0.86 2.54 0.36 116.61 5.70 0.87 1.07 CK10201-6 中粗粒辉长岩 17.8 470 1.4 0.3 0.70 11.0 13.2 26.2 1.1 3.44 362 15.5 57.1 2.0 3.92 1.28 4.21 21.0 0.83 2.11 0.31 4.30 0.72 2.35 0.35 78.72 4.19 0.95 0.93 CK10201-7 中-细粒矿化辉长岩 11.5 210 1.8 0.3 0.62 9.9 10.5 25.8 4.8 3.11 429 13.7 60.6 1.9 3.79 1.18 3.60 21.0 0.73 1.81 0.26 3.98 0.67 2.03 0.28 71.44 4.35 0.92 1.09 DPZ-1 中-粗粒辉长岩 29.3 420 1.4 0.2 0.39 6.4 7.1 17.3 4.5 2.08 260 9.0 27.4 0.9 2.43 0.99 3.04 17.2 0.62 1.65 0.22 2.98 0.52 1.72 0.27 49.92 3.53 1.12 1.09 DPZ-71-2 辉绿辉长岩 22.2 280 1.8 0.4 1.07 16.6 16.1 37.2 2.1 5.54 542 25.6 120.0 3.4 6.61 2.47 6.63 31.8 1.26 2.96 0.43 7.22 1.18 3.49 0.49 117.18 3.95 1.09 0.96 DPZ-74 中细粒辉长岩 10.6 320 2.7 0.3 1.02 15.1 15.6 34.5 3.2 4.77 223 19.8 75.4 2.5 4.70 1.40 4.45 22.6 0.86 2.24 0.32 5.13 0.79 2.56 0.35 97.47 4.84 0.87 0.97 ZK3002-4 中-细粒辉长岩 13.7 180 1.7 0.3 0.30 4.8 8.1 17.2 2.7 1.99 253 8.7 48.6 1.6 2.60 0.85 3.49 20.6 0.72 1.86 0.28 3.17 0.59 2.06 0.30 51.91 3.16 0.90 1.02 ZK3002-5 细粒辉长岩 9.4 170 1.5 0.3 0.24 3.8 6.4 13.5 4.1 1.68 276 7.4 47.9 1.4 2.10 0.85 2.82 16.6 0.58 1.52 0.22 2.50 0.45 1.73 0.25 42.00 3.17 1.13 0.99 ZK3002-18 矿化粗粒辉长岩 23.1 190 1.6 0.3 0.32 5.0 7.8 17.9 4.5 2.09 261 9.3 39.6 1.4 2.69 1.01 3.67 21.2 0.73 1.98 0.28 3.21 0.62 2.15 0.33 53.76 3.14 1.05 1.07 ZK3002-20 矿化细粒辉长岩 11.1 140 1.3 0.2 0.25 4.1 6.2 13.4 5.3 1.59 205 7.3 46.3 1.5 2.10 0.72 2.95 16.6 0.58 1.62 0.23 2.54 0.47 1.72 0.26 41.68 3.02 0.95 1.02 ZK21301-1 辉绿岩 13.3 420 2.1 0.5 1.04 17.1 18.0 38.6 7.5 5.28 429 23.3 111.0 3.1 5.51 1.99 5.10 23.6 0.96 2.23 0.32 5.70 0.94 2.61 0.37 110.91 5.08 1.08 0.96 K-8 辉绿岩 2.9 30 0.6 0.2 0.46 7.0 6.1 15.5 1.9 1.94 106.5 8.5 69.1 2.0 2.42 0.95 2.95 16.7 0.57 1.49 0.19 2.91 0.54 1.64 0.24 45.94 3.36 1.09 1.10 K-14 辉绿岩 3.0 60 0.6 0.2 0.42 6.5 6.2 13.8 0.7 1.80 53.5 8.1 48.5 1.5 2.09 0.81 2.54 13.8 0.55 1.26 0.16 2.60 0.45 1.41 0.21 41.98 3.57 1.06 1.00 K-41 辉绿岩 17.3 20 0.7 0.2 0.49 7.6 6.6 15.3 1.9 1.82 89.1 7.6 50.3 1.6 2.12 0.86 2.61 14.4 0.53 1.24 0.19 2.41 0.49 1.50 0.19 43.46 3.74 1.16 1.06 K-244 辉绿岩 0.8 20 0.6 0.2 0.41 5.9 6.5 13.3 1.5 2.00 38.8 8.9 55.0 1.7 2.43 0.87 2.80 14.8 0.55 1.31 0.18 3.00 0.46 1.60 0.21 44.11 3.36 0.98 0.90 K-13 苦橄岩 10.5 230 0.7 0.2 0.48 7.2 7.5 17.7 9.0 2.02 183 8.7 71.0 1.9 2.37 0.89 2.81 16.1 0.57 1.29 0.19 2.71 0.51 1.48 0.23 48.97 4.00 1.07 1.09 K-15 苦橄岩 8.2 230 0.7 0.2 0.50 7.6 7.7 16.8 3.9 2.18 183 9.7 75.5 2.0 2.61 1.04 3.09 16.8 0.66 1.50 0.20 0.0 0.0 0.0 0.0 40.56 3.65 1.05 1.10 K-18 苦橄岩 5.8 190 0.6 0.2 0.38 5.7 5.7 14.2 2.6 1.72 188 7.4 66.9 1.8 2.05 0.77 2.38 13.7 0.50 1.17 0.17 2.43 0.44 1.43 0.20 47.29 3.68 1.06 0.95 K-246-2 苦橄岩 4.1 70 0.6 0.2 0.41 5.8 7.5 15.3 3.3 2.01 194 9.0 64.2 1.8 2.46 0.92 2.84 14.5 0.56 1.38 0.20 2.86 0.47 1.56 0.23 47.49 3.61 0.97 0.86 K-246-3 苦橄岩 5.1 140 0.6 0.2 0.43 6.2 7.7 14.5 4.4 2.14 257 9.4 62.1 1.9 2.55 0.89 2.90 14.7 0.55 1.32 0.19 3.06 0.48 1.59 0.22 44.29 3.47 1.08 0.88 K-171 苦橄岩 8.8 110 0.5 0.2 0.39 5.7 7.6 13.8 4.1 1.80 170 8.1 61.1 1.7 2.22 0.87 2.84 14.2 0.56 1.35 0.20 2.72 0.47 1.53 0.23 108.60 5.21 1.10 0.94 注:分析数据由澳实分析检测(广州)有限公司测定. 表 3 平川地区镁铁质-超镁铁质岩锆石U-Pb年代学分析结果
Table 3. The analysis results of zircon U-Pb dating of mafic-ultramafic rock in Pingchuan region
分析点 含量(10-6) Th/U U-Th-Pb同位素比值±1σ 同位素年龄±1σ(Ma) U Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 206Pb/238U 207Pb/235U 208Pb/232Th DSS 01 764 946 1.24 0.051 4±0.001 5 0.291 3±0.008 6 0.041 0±0.000 4 0.011 3±0.000 2 258.91±2.50 259.55±6.76 227.08±3.46 02 649 1 076 1.66 0.054 2±0.001 7 0.307 8±0.009 3 0.041 1±0.000 4 0.011 1±0.000 2 259.84±2.41 272.44±7.26 222.77±4.09 03 623 856 1.37 0.050 9±0.001 6 0.288 8±0.008 9 0.041 0±0.000 4 0.011 3±0.000 2 259.25±2.45 257.59±7.02 227.56±4.45 04 470 862 1.83 0.053 7±0.001 8 0.305 4±0.010 4 0.041 1±0.000 4 0.011 7±0.000 2 259.58±2.53 270.64±8.09 234.66±4.63 05 563 783 1.39 0.052 1±0.001 7 0.295 1±0.009 5 0.041 0±0.000 4 0.011 5±0.000 2 259.30±2.71 262.58±7.49 230.70±4.29 06 421 525 1.25 0.050 6±0.001 9 0.285 7±0.010 6 0.041 1±0.000 4 0.011 3±0.000 2 259.69±2.77 255.15±8.40 226.73±4.99 07 746 1 300 1.74 0.054 6±0.001 6 0.310 8±0.008 6 0.041 2±0.000 4 0.011 5±0.000 2 260.31±2.35 274.79±6.66 231.97±4.81 08 387 418 1.08 0.051 2±0.001 9 0.291 0±0.010 8 0.041 1±0.000 4 0.011 6±0.000 3 259.90±2.63 259.38±8.46 232.48±5.54 09 340 484 1.43 0.049 4±0.002 2 0.279 9±0.012 5 0.041 1±0.000 4 0.011 4±0.000 3 259.38±2.76 250.60±9.88 229.50±5.60 10 152 119 0.78 0.053 6±0.002 8 0.302 6±0.016 0 0.041 1±0.000 6 0.010 9±0.000 4 259.63±3.93 268.45±9.49 218.88±8.29 11 632 607 0.96 0.050 1±0.001 6 0.283 8±0.008 8 0.041 1±0.000 4 0.011 3±0.000 3 259.84±2.38 253.70±6.99 227.63±5.18 12 523 641 1.23 0.049 9±0.001 7 0.281 1±0.009 1 0.040 9±0.000 4 0.011 5±0.000 2 258.56±2.70 251.56±7.22 230.56±4.80 13 673 1 067 1.59 0.052 8±0.001 6 0.298 1±0.009 0 0.041 0±0.000 5 0.011 5±0.000 2 258.88±2.93 264.89±7.06 230.30±4.89 14 274 291 1.06 0.052 0±0.002 5 0.292 4±0.014 2 0.041 0±0.000 5 0.011 2±0.000 3 258.82±3.35 260.47±8.17 224.68±5.59 15 559 749 1.34 0.048 7±0.001 6 0.278 4±0.009 4 0.041 2±0.000 4 0.011 5±0.000 3 260.55±2.76 249.41±7.50 230.14±5.31 16 389 553 1.42 0.051 4±0.001 7 0.293 2±0.010 3 0.041 1±0.000 4 0.011 4±0.000 3 259.73±2.72 261.07±8.05 229.73±5.06 17 694 1 253 1.81 0.051 0±0.001 6 0.291 2±0.008 8 0.041 2±0.000 4 0.011 7±0.000 2 260.52±2.27 259.47±6.92 235.95±4.30 18 505 795 1.57 0.052 9±0.001 7 0.299 1±0.009 3 0.041 1±0.000 5 0.010 9±0.000 2 259.39±3.27 265.68±7.27 219.70±4.12 19 303 422 1.39 0.047 7±0.002 0 0.272 5±0.011 5 0.041 2±0.000 4 0.012 2±0.000 3 260.10±2.75 244.65±9.15 244.29±5.59 20 502 612 1.22 0.051 9±0.001 8 0.293 4±0.009 6 0.041 2±0.000 5 0.011 3±0.000 2 260.24±3.29 261.21±7.50 226.39±4.69 21 1 189 1 355 1.14 0.050 5±0.001 2 0.300 1±0.007 8 0.042 7±0.000 4 0.011 8±0.000 2 269.82±2.27 266.47±6.06 236.15±4.33 22 254 367 1.44 0.104 0±0.003 6 0.612 5±0.021 2 0.042 7±0.000 5 0.014 6±0.000 3 269.26±3.05 485.11±9.35 293.61±5.54 23 2 869 2 369 0.83 0.051 4±0.001 0 0.305 0±0.006 5 0.042 7±0.000 4 0.011 8±0.000 2 269.73±2.74 270.30±5.03 237.35±4.38 24 2 382 4 269 1.79 0.050 6±0.001 1 0.299 9±0.006 9 0.042 7±0.000 4 0.011 9±0.000 2 269.80±2.63 266.32±5.40 239.70±4.77 25 634 1 049 1.66 0.064 6±0.002 0 0.382 9±0.011 9 0.042 8±0.000 5 0.012 1±0.000 2 270.47±3.06 329.17±8.77 243.22±4.77 KI-8 01 1 329 688 0.52 0.047 3±0.002 2 0.070 3±0.003 1 0.010 8±0.000 1 0.003 6±0.000 1 69.6±0.8 69.0±3.0 72.4±2.1 04 778 466 0.60 0.051 1±0.001 7 0.277 9±0.009 4 0.039 2±0.000 4 0.012 3±0.000 4 248.1±2.8 249.0±7.5 247.2±7.2 05 734 415 0.57 0.051 7±0.002 1 0.279 6±0.011 2 0.039 0±0.000 4 0.013 2±0.000 4 246.6±2.3 250.4±8.9 265.0±8.3 KI-18 01 1 568 1 202 0.77 0.083 1±0.003 2 0.115 3±0.004 4 0.010 0±0.000 1 0.003 6±0.000 1 64.3±0.8 110.8±4.0 73.0±2.2 03 308 664 2.16 0.099 0±0.004 0 0.531 6±0.021 3 0.039 2±0.000 6 0.007 2±0.000 3 248.1±3.8 264.0±7.0 221.0±6.6 04 366 185 0.50 0.058 9±0.001 9 0.632 7±0.019 0 0.078 0±0.000 9 0.022 4±0.000 6 484.0±5.6 497.8±11.8 446.9±12.2 05 203 208 1.02 0.073 1±0.002 7 0.784 2±0.031 2 0.078 1±0.001 1 0.023 6±0.000 8 484.5±6.7 587.9±17.7 471.3±15.4 06 374 119 0.32 0.060 2±0.001 8 0.657 2±0.020 2 0.078 7±0.000 9 0.023 2±0.000 7 488.3±5.4 512.9±12.4 463.0±13.7 07 253 235 0.93 0.098 6±0.002 4 3.599 6±0.089 7 0.263 3±0.003 5 0.064 1±0.001 4 15 06.5±17.7 1 549.4±19.8 1 255.0±26.8 08 161 146 0.90 0.095 3±0.002 5 3.643 7±0.093 5 0.276 4±0.003 2 0.074 6±0.001 8 1 573.0±16.3 1 559.1±20.4 1 454.9±33.1 09 258 262 1.02 0.099 9±0.002 1 3.831 7±0.088 4 0.277 7±0.004 0 0.064 7±0.001 4 1 579.6±20.4 1 599.4±18.6 1 266.7±26.4 注:分析测试工作在中国地质大学(武汉)地质过程与矿产资源国家重点实验室测定. 表 4 平川地区大杉树辉长岩锆石稀土分析结果
Table 4. The analysis results of zircon REE of Dashanshu gabbro in Pingchuan region
分析点 元素(10-6) LREE/HREE δEu δCe La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 01 0.009 2 34.90 0.09 1.43 3.08 1.33 21.62 11.26 157.62 65.67 323.46 76.32 759.13 129.94 0.03 0.36 105.52 02 0.000 0 27.54 0.12 1.79 4.18 1.17 21.80 10.71 132.70 52.16 221.94 48.30 455.14 73.12 0.03 0.30 63.41 03 0.005 0 42.82 0.09 2.15 5.26 1.54 26.27 14.09 189.26 79.84 368.47 83.82 819.12 133.59 0.03 0.33 139.59 04 0.100 3 24.44 0.46 7.26 13.99 5.00 87.08 36.38 435.58 158.82 683.81 144.48 1364.94 215.60 0.02 0.33 13.94 05 0.016 3 44.48 0.16 2.60 5.73 1.48 31.42 15.81 209.74 82.38 379.41 83.80 804.10 131.03 0.03 0.27 78.12 06 0.000 0 27.92 0.09 1.38 3.92 1.17 19.61 10.12 143.30 58.62 287.90 67.06 681.36 115.61 0.02 0.33 93.24 07 0.097 8 34.97 0.53 8.07 18.09 5.36 90.56 39.55 470.83 173.93 750.13 165.51 1 557.64 249.51 0.02 0.33 17.65 08 0.063 5 29.49 0.21 2.91 5.90 1.51 32.22 15.35 194.75 79.12 358.21 80.99 790.04 124.81 0.02 0.27 36.52 09 0.000 0 18.84 0.19 4.44 9.89 2.20 45.90 19.90 228.14 84.08 360.77 77.76 733.30 113.78 0.02 0.26 28.47 10 0.013 9 12.31 0.05 0.86 2.71 0.55 13.32 6.72 84.84 34.95 164.51 38.34 386.28 66.08 0.02 0.23 61.98 11 0.052 9 29.64 0.05 1.83 3.60 1.19 20.14 10.66 149.18 61.29 290.88 66.07 661.86 107.02 0.03 0.34 115.23 12 0.046 4 42.45 0.16 2.23 6.73 1.48 35.03 16.54 223.37 90.59 414.22 92.97 895.55 142.99 0.03 0.24 67.51 13 0.054 5 40.63 0.39 6.42 13.35 3.60 69.48 29.53 361.78 129.67 557.11 118.41 1 072.94 168.56 0.03 0.29 28.14 14 0.014 5 15.82 0.10 1.79 3.05 1.00 17.67 7.92 107.12 44.55 210.12 49.19 484.44 85.38 0.02 0.33 43.36 15 0.046 0 22.48 0.36 6.88 12.12 2.68 58.28 25.39 294.42 108.22 460.19 99.14 930.72 142.63 0.02 0.25 17.16 16 0.000 0 20.36 0.18 4.79 7.25 2.41 38.89 17.20 210.42 77.92 350.77 78.58 767.70 122.09 0.02 0.35 32.20 17 0.133 3 42.41 0.52 9.42 24.11 6.30 120.51 49.27 575.26 204.58 850.92 180.25 1 654.82 245.62 0.02 0.29 21.38 18 0.019 2 22.06 0.37 4.91 11.44 2.60 59.31 28.29 350.92 132.60 577.49 122.86 1 134.99 178.77 0.02 0.25 16.59 19 0.019 4 15.38 0.29 4.77 8.52 2.14 46.19 20.50 245.44 89.35 382.46 83.29 778.75 120.58 0.02 0.26 14.58 20 0.039 6 20.02 0.21 4.04 7.42 1.87 40.21 16.97 217.08 86.48 384.21 84.26 799.30 132.11 0.02 0.26 24.97 21 0.013 6 3.41 0.07 1.42 3.46 1.57 15.93 7.80 99.53 41.14 197.15 49.38 549.88 100.54 0.01 0.54 12.28 22 0.047 7 14.43 0.19 3.55 9.10 2.67 45.89 19.72 229.23 84.99 363.72 78.35 727.83 117.92 0.02 0.32 19.89 23 0.025 4 19.92 0.12 1.84 4.83 1.77 26.31 12.18 163.87 67.30 321.23 76.78 812.31 146.50 0.02 0.38 42.60 24 0.041 0 50.80 0.17 1.13 3.75 1.78 25.77 13.19 182.01 77.44 386.06 94.43 988.67 172.94 0.03 0.41 77.19 25 0.014 9 42.62 0.19 2.95 4.95 1.26 28.76 13.72 161.79 63.03 283.36 61.02 580.10 92.22 0.04 0.25 62.42 注:分析测试工作在中国地质大学(武汉)地质过程与矿产资源国家重点实验室测定. -
[1] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. doi: 10.1007/s00410-002-0346-7 [2] Griffin, W.L., Belousova, E.A., Shee, S., 2004. Crustal Evolution in the Northern Yiliarn Craton: U-Pb and Hf Iotope Evidence from Detrital Zircon. Precambrian Research, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011 [3] Griffiths, R.W., Camnpbell, I.H., 1991. lnternetion of Mantle Plume Hends with the Earth's Surface and Onset of Small-Scale Convection. Journal of Geophysical Research, 96(18): 295-310. doi: 10.1029/91JB01897/abstract [4] He, Z., 1986. The Metallogenetic Series for Alkalic Complexes in Panzhihua-Xichang Rift. Earth Science—Journal of Wuhan College of Geology, 11(6): 652-658 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198606014.htm [5] Hoskin, P.W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 3: 27-62. doi: 10.2113/0530027 [6] Hou, Z.Q., Cheng, W., Lu, J.R., 2006.259 Ma Continental Flood Basalt Events, Sichuan Emei Large Igneous Province: Evidence from the Laser 40Ar/39Ar Dating. Acta Geologica Sinica, 8: 1130 (in Chinese). [7] Lin, Q.C., Xia, B., Zhang, Y.Q., 2006. Zircon SHRIMP U-Pb Dating of the Cida Alkali Complex in the Dechang Area, Southern Sichuan, China. Geological Bulletin of China, 25(3): 398-401 (in Chinese with English abstract). [8] Liu, H.Y., 2005. Geochronological Study of Alkaline Rocks in Panxi, SW China and Its Geological Implications. The Chinese Academy of Scienecs, Beijing (in Chinese with English abstract). [9] Liu, J.D., Zhang, C.J., Liu, X.F., et al., 2004. Metallogenic Regularity and Prospecting of Southwestern Margin of the Yangtze Platform. Geological Publishing House, Beijing (in Chinese). [10] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51: 537-571. doi: 10.1093/petrology/egp082 [11] Lo, C.H., Chung, S.L., Lee, T.Y., et al., 2002. Age of the Emeishan Flood Magmatism and Relations to Permian-Triassic Boundary Events. Earth Planet. Sci. Lett, 198: 449-458. doi: 10.1016/S0012-821×(02)00535-6 [12] Lu, J.R., Zhang, G.D., Zhang, C.X., et al., 1987. Magmatic Types and Geneses of the Layered Intrusions in Panzhihua-Xichang Area. Mineral Deposits, 6(2): 1-15 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=KCDZ198702000&dbcode=CJFD&year=1987&dflag=pdfdown [13] Ludwig, K.R., 2003. Users Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [14] Luo, Y. N, 1985. Understanding and Progress of the Panzhihua-Xichang Ancient Rift Research. Geology in China, 1: 27-32 (in Chinese). [15] Mei, H.J., 1973. The Relationship between the Petrochemibcal Characteristics of Two Trap Series in Southwestern China and Related Iron and Nickel Mineralizations. Geochimica, 4: 219-253 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX197304000.htm [16] Neal, C.R., Mahoney, J.J., Chazey Ⅲ, W.J., 2002. Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from Odpleg 183. Journal of Petrology, 43(7): 1177-1205. doi: 10.1093/petrology/43.7.1177 [17] Oven, A., Pasteels, P., Punzalan, L.E., 2002. 40Ar/39Ar Geochronologieal Eonstrainson: The Age and Evolution of the Permo-Triassic Emeishan Volcanic Province, Southwest China. Asian Earth Sciences, 20: 157-175. doi: 10.1016/S1367-9120(01)00031-1 [18] Shen, S., Jin, M.X., Lu, Y.F., 1988. Mineralization Deposits in Laws and Prospect for Main Ore Deposits in the Xichang-Central Yunnan Area. Chongqing Press, Chongqing (in Chinese with English abstract). [19] Shi, G.Y., Sun, X.M., Wang, S.W., et al., 2006. Re-Os Isotope Dating and Its Geological Implieation of Baimazhai Cu-Ni Sulphide Deposit, Yunnan Province, China. Acta Petrologica Sinica, 22(10): 2451-2456 (in Chinese with English abstract). [20] Song, X.Y., Hou, Z.Q., Cao, Z.M., et al., 2001. Geochemical Characteristics and Period of the Emei Igneous Province. Acta Geologica Sinica, 75(4): 498-506 (in Chinese with English abstract). [21] Song, X.Y., Wang, Y.L., Cao, Z.M., et al., 1998. Emeishan Basalts, Emei Taphrogenyand Mantle Plume. Geology Geochemistry, 1: 47-52 (in Chinese with English abstract). [22] Song, X.Y., Zhang, C.J., Hu, R.Z., et al., 2005. Genetic Links of Magmatic Deposits in the Emeishan Large Igneous Province with Dynamics of Mantle Plume. J. Mineral. Petrol., 25(4): 35-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200504006.htm [23] Tao, Y., Luo, T.Y., Gao, Z.M., et al., 2004. The Relation between Emeishan Continental Flood Basalis and Cu-Ni-PGE Deposits of Southwestern China Trap—A Case Study on Jinbaoshan Mafic-Ultramafic Intrusion, Yunnan. Geological Review, 50(1): 9-16 (in Chinese with English abstract). http://www.researchgate.net/publication/292754887_The_relation_between_Emeishan_continental_flood_basalts_and_Cu-Ni_deposits_of_southwestern_China_trap_A_case_study_on_Jinbaoshan_mafic-ultramafic_intrusion_Yunnan?ev=auth_pub [24] Teng, J.W., Wei, S.Y., 1987. The Formation, Evolution and Classification of the Panzhihua-Xichang (Pan-Xi) Tift. Geotectonica et Metallogenia, 11(1): 77-90 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK198701010&dbcode=CJFD&year=1987&dflag=pdfdown [25] Tian, J.Y., Hu, X.R., 1986. Mineralization of Panzhihua-Type Vanadio-Titanomagnetite Ore Deposits and Its Tectonic Setting. Earth Science—Journal of Wuhan College of Geology, 11(6): 638-644 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX198606012.htm [26] Wang, C.G., Xu, W. l., Wang, F., et al., 2011. Petrogenesis of the Early Cretaceous Xi'anli Hornblende-Gabbros from the Southern Taihang Mountains: Evidence from Zircon U-Pb Geochronology, Hf Isotope and Whole-Rock Geochemistry. Earth Science—Journal of China University of Geosciences, 36(3): 471-482 (in Chinese with English abstract). doi: 10.3799/dqkx.2011.049 [27] Wang, D.H., 1998. Mantle Plume and Its Mineralization. Earthquake Press, Beijing (in Chinese). [28] Wang, D.H., 2001. Basic Concept, Classification, Evolution of Mantle Plume and Large Scale Mineralization Probe into Southwestern China. Earth Science Frontiers, 8(3): 67-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200103009.htm [29] Wang, D.H., Chen, Z.H., Chen, Y.C., et al., 2010. New Data of the Rock-Forming and Ore-Forming Chronology for China's Important Mineral Resources Areas. Acta Geologica Sinica, 84(7): 1030-1040 (in Chinese with English abstract). http://www.researchgate.net/publication/284594588_New_data_of_the_rock-forming_and_ore-forming_chronology_for_China's_important_mineral_resources_areas [30] Wang, M., Zhang, Z.C., Hou, T., et al., 2011. Geochronology and Geochemistry of the Dabanshan Intrusion in Panxi District and Its Constraints on the Metallogenesis of Cu-Ni Sulfide Deposits. Acta Petrologica Sinica, 27(9): 2665-2678 (in Chinese with English abstract). http://www.oalib.com/paper/1476032 [31] Wu, G.Y., 1997. Tectonic Evolution of Panzhihua-Xichang Paleorift during Late Palaeozoic. Journal of Chengdu University of Technology, 24(2): 48-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG702.006.htm [32] Xia, B., Liu, H.Y., Zhang, Y.Q., 2004. SHRIMP Dating of Agpaitic Alkalic Rocks in Panxi Rift Zone and Its Geological Implications-Examples for Hongge, Baima and Jijie Rock Bodies. Geotectonica et Metallogenia, 28(2): 149-154 (in Chinese with English Abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK200402005&dbcode=CJFD&year=2004&dflag=pdfdown [33] Xiao, L., Franco, P., He, Q., 2007. A Preliminary Discussion on Large Igneous Provinces and Associated Ore Deposits. Geological Journal of China Universities, 13(2): 148-160 (in Chinese with English Abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200702001.htm [34] Yang, G.X., Li, Y.J., Si, G.H., et al., 2010. LA-ICP-MS Zircon U-Pb Dating of Kubusunan Granodiorite and the Enclaves from Kalamaili Area in Eastern Junggar, Xinjiang, and Its Geological Implications. Earth Science—Journal of Geosciences, 35(4): 597-610 (in Chinese with English Abstract). [35] Yang, S.H., Que, M.Y., 1987. Magnetite Characteristics of Magnetite from Pay Iron Deposits and the Genesis of the Deposits. Chongqing Press, Chongqing (in Chinese with English Abstract). [36] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zricon by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Geostandard Research, 28: 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [37] Zeng, L.G., 2011. A Study on Metallogenic Regularity of Pingchuang Iron Deposit in Yanyuan County, Sichuan Province. China University of Geosciences, Wuhan (in Chinese with English Abstract). [38] Zhang, Y.X., Luo, Y.N., Yang, C.X., 1988. Panxi Rift. Geological Publishing House, Beijing (in Chinese). [39] Zhang, C.J., Liu, J.D., Liu, X.F., et al., 2004. Primary Discussion on Ore-Forming Effect of Emei Igneous Province. J. Mineral. Petrol., 24(1): 5-9 (in Chinese with English Abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_mineralogy-petrology_thesis/0201253963379.html [40] Zhang, Z.C., Wang, F.S., 2003. Sr, Nd And Pb Isotopic Characteristics of Emeishan Basalt Province and Discussion on Their Source Region. Earth Science—Journal of China University of Geosciences, 28(4): 431-439 (in Chinese with English Abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200304012.htm [41] Zhang, Z.C., Mahoney, J.J., Wang, F.S., et al., 2006. Geochemistry of Picritic and Associated Basalt Flows of the Fload Province, China: Evidence for a Plume-Head Origin. Acta Petrologica Sinica, 22(6): 1538-1552 (in Chinese with English Abstract). doi: 10.1093/petrology/egl034 [42] Zhang, Z.C., Li, Y., Zhao, L., et al., 2007. Geochemistry of Three Layered Mafic-Ultramafic Intrusions in the Panxi Area and Constraints on Their Sources. Acta Petrologica Sinica, 10: 2339-2352 (in Chinese with English Abstract). http://www.researchgate.net/publication/298905231_Geochemistry_of_three_layered_mafic-ultramafic_intrusionsin_the_Panxi_area_and_constraints_on_their_sources [43] Zhang, Z.C., 2009. A Discussion on Some Important Problems Concerning the Emeishan Large Igneous Province. Geology in China, 36(3): 634-646 (in Chinese with English Abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200903012.htm [44] Zhang, Z.C., Mahoney, J.J., Mao, J.W., et al., 2006. Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province, China. Journal of Petrology, 47: 1997-2019. doi: 10.1093/petrogy/eg1034 [45] Zhong, H., Xu, G.W., Zhu, W.G., et al., 2009. Petrogenesis of the Taihe Granites in the Emeishan Large Igneous Province and Its Tectonic Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 28(2): 99-110 (in Chinese with English Abstract). http://www.researchgate.net/publication/285980973_Petrogenesis_of_the_taihe_granites_in_the_emeishan_large_igneous_province_and_its_tectonic_implications [46] Zhong, H., Zhu, W.G., Hu, R.Z., et al., 2004. The Relationship of Geochronology, Geochemistry and Emeishan Basalts of Hongge Rock in Panxi. Bulletin of Mineralogy, Petrology and Geochemistry, 23(Supplement): 105 (in Chinese). [47] Zhou, M.F., Malpas, J., Song, X.Y., 2002. A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalu Plan Mass Exnnctton. Earth and Planetary Science Letters, 196(3-4): 113-122. doi: 1016/S0012-821X(01)00608-2 [48] 和昭, 1986. 与攀西裂谷碱性杂岩有关的成矿系列. 地球科学——武汉地质学院学报, 11(6): 652-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198606014.htm [49] 侯增谦, 陈文, 卢记仁, 2006. 四川峨嵋大火成岩省259 Ma大陆溢流玄武岩喷发事件: 来自激光40Ar/39Ar测年证据. 地质学报, 1130. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200608010.htm [50] 林清茶, 夏斌, 张玉泉, 2006. 川南德昌地区茨达碱性岩锆石SHRIMP U-Pb定年. 地质通报, 25(3): 398-401. doi: 10.3969/j.issn.1671-2552.2006.03.009 [51] 刘红英, 2005. 攀西地区碱性岩的年代学研究及其地质意义(博士学位论文). 北京: 中国科学院研究生院. [52] 刘家铎, 张成江, 刘显凡, 等, 2004. 扬子地台西南缘成矿规律及找矿方向. 北京: 地质出版社. [53] 卢记仁, 张光弟, 张承信, 等, 1987. 攀西层状基性超基性岩体岩浆类型及成因. 矿床地质, 6(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198702000.htm [54] 骆耀南, 1985. 攀西古裂谷研究中的认识和进展. 中国地质, (1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI198501009.htm [55] 梅厚均, 1973. 西南暗色岩深渊分异两个系列的岩石化学特征与铁镍矿化的关系. 地球化学, (4): 219-253. doi: 10.3321/j.issn:0379-1726.1973.04.001 [56] 沈苏, 金明霞, 陆元法, 1988. 西昌-滇中地区主要矿产成矿规律及找矿方向. 重庆: 重庆出版社. [57] 石贵勇, 孙晓明, 王生伟, 等, 2006. 云南白马寨铜镍硫化物矿床Re-Os同位素定年及其地质意义. 岩石学报, 22(10): 2451-2456. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610004.htm [58] 宋谢炎, 侯增谦, 曹志敏, 等, 2001. 峨眉大火成岩省的岩石地球化学特征及时限. 地质学报, 75(4): 498-506. doi: 10.3321/j.issn:0001-5717.2001.04.009 [59] 宋谢炎, 王玉兰, 曹志敏, 等, 1998. 峨眉山玄武岩、峨眉地裂运动与地幔柱. 地质地球化学, (1): 47-52. [60] 宋谢炎, 张成江, 胡瑞忠, 等, 2005. 峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系. 矿物岩石, 25(4): 35-44. doi: 10.3969/j.issn.1001-6872.2005.04.007 [61] 陶琰, 罗泰义, 高振敏, 等, 2004. 西南暗色岩铜镍硫化物矿化岩体与峨眉山玄武岩的关系——以云南金宝山岩体为例. 地质论评, 50(1): 9-16. doi: 10.3321/j.issn:0371-5736.2004.01.002 [62] 膝吉文, 魏斯禹, 1987. 中国四川攀枝花—西昌(攀西)裂谷的形成、演化与裂谷分类. 大地构造与成矿学, 11(1): 77-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK198701010.htm [63] 田竞亚, 胡秀蓉, 1986. 攀枝花(式)铁矿成矿机理与生成环境初探. 地球科学——武汉地质学院学报, 11(6): 638-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198606012.htm [64] 王春光, 许文良, 王枫, 等, 2011. 太行山南段西安里早白垩世角闪辉长岩的成因: 锆石U-Pb年龄、Hf同位素和岩石地球化学证据. 地球科学——中国地质大学学报, 36(3): 471-482. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201103005.htm [65] 王登红, 1998. 地幔柱及其成矿作用. 北京: 地震出版社. [66] 王登红, 2001. 地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨. 地学前缘, 8(3): 67-72. doi: 10.3321/j.issn:1005-2321.2001.03.008 [67] 王登红, 陈郑辉, 陈毓川, 等, 2010. 我国重要矿产地成岩成矿年代学研究新数据. 地质学报, 84(7): 1030-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007009.htm [68] 王萌, 张招崇, 侯通, 等, 2011. 攀西地区大板山岩体的年代学、元素地球化学及其对铜镍硫化物矿床成因的约束. 岩石学报, 27(9): 2775-2678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109017.htm [69] 吴根耀, 1997. 攀枝花-西昌古裂谷晚古生代的演化. 成都理工学院学报, 24(2): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG702.006.htm [70] 夏斌, 刘红英, 张玉泉, 2004. 攀西古裂谷钠质碱性岩锆SHRIMP U-Pb年龄及地质意义——以红格、白马和鸡街岩体为例. 大地构造与成矿学, 28(2): 149-154. doi: 10.3969/j.issn.1001-1552.2004.02.006 [71] 肖龙, Franco Pirajno, 何琦, 2007. 试论大火成岩省与成矿作用. 高校地质学报, 13(2): 148-160. doi: 10.3969/j.issn.1006-7493.2007.02.002 [72] 杨高学, 李永军, 司国辉, 等, 2010. 东准库布苏南岩体和包体的LA-ICP-MS锆石U-Pb测年及地质意义. 地球科学——中国地质大学学报, 35(4): 597-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004013.htm [73] 杨时惠, 阙梅英, 1987. 西昌-滇中地区磁铁矿特征及其矿床成因. 重庆: 重庆出版社. [74] 曾令高, 2011. 四川盐源平川铁矿床成矿规律研究(硕士学位论文). 武汉: 中国地质大学. [75] 张云湘, 罗耀南, 杨崇喜, 1988. 攀西裂谷. 北京: 地质出版社. [76] 张成江, 刘家铎, 刘显凡, 等, 2004. 峨眉火成岩省成矿效应初探. 矿物岩石, 24(1): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200401002.htm [77] 张招崇, 王福生, 2003. 峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨. 地球科学——中国地质大学学报, 28(4): 431-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304012.htm [78] 张招崇, John J Mahoney, 王福生, 等, 2007. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部熔融的证据. 岩石学报, 22(06): 1538-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606012.htm [79] 张招崇, 李莹, 赵莉, 等, 2007. 攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束. 岩石学报, 23(10): 2339-2352. doi: 10.3969/j.issn.1000-0569.2007.10.003 [80] 张招崇, 2009. 关于峨眉山大火成岩省一些重要问题的讨论. 中国地质, 36(3): 634-646. doi: 10.3969/j.issn.1000-3657.2009.03.010 [81] 钟宏, 朱维光, 胡瑞忠, 等, 2004. 攀西地区红格岩体的年代学、地球化学特征及其与峨眉山玄武岩的联系. 矿物岩石地球化学通报, 23(增刊): 105. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200412001084.htm [82] 钟宏, 徐桂文, 朱维光, 等, 2009. 峨眉山大火成岩省太和花岗岩的成因及构造意义. 矿物岩石地球化学通报, 28(2): 99-110. doi: 10.3969/j.issn.1007-2802.2009.02.001