• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆塔什库尔干塔阿西一带火山岩成因及地质意义

    高晓峰 校培喜 康磊 朱海平 过磊 奚仁刚 董增产

    高晓峰, 校培喜, 康磊, 朱海平, 过磊, 奚仁刚, 董增产, 2013. 新疆塔什库尔干塔阿西一带火山岩成因及地质意义. 地球科学, 38(6): 1169-1182. doi: 10.3799/dqkx.2013.116
    引用本文: 高晓峰, 校培喜, 康磊, 朱海平, 过磊, 奚仁刚, 董增产, 2013. 新疆塔什库尔干塔阿西一带火山岩成因及地质意义. 地球科学, 38(6): 1169-1182. doi: 10.3799/dqkx.2013.116
    GAO Xiao-feng, XIAO Pei-xi, KANG Lei, ZHU Hai-ping, GUO Lei, XI Ren-gang, DONG Zeng-chan, 2013. Origin of the Volcanic Rocks from the Ta'axi Region, Taxkorgan Xinjiang and Its Geological Significance. Earth Science, 38(6): 1169-1182. doi: 10.3799/dqkx.2013.116
    Citation: GAO Xiao-feng, XIAO Pei-xi, KANG Lei, ZHU Hai-ping, GUO Lei, XI Ren-gang, DONG Zeng-chan, 2013. Origin of the Volcanic Rocks from the Ta'axi Region, Taxkorgan Xinjiang and Its Geological Significance. Earth Science, 38(6): 1169-1182. doi: 10.3799/dqkx.2013.116

    新疆塔什库尔干塔阿西一带火山岩成因及地质意义

    doi: 10.3799/dqkx.2013.116
    基金项目: 

    国家自然科学基金 41002020

    陕西省自然科学基金 2011JQ5008

    中国地质调查局国土资源大调查研究项目 1212011085034

    详细信息
      作者简介:

      高晓峰(1979-), 男, 副研究员, 从事岩石学和岩石地球化学研究.E-mail: xfgao2000@163.com

    • 中图分类号: P581

    Origin of the Volcanic Rocks from the Ta'axi Region, Taxkorgan Xinjiang and Its Geological Significance

    • 摘要: 通过岩石学、地球化学和同位素年代学研究, 从原划"布伦阔勒岩群"中识别出一套"双峰式"火山岩, 英安岩锆石LA-ICP-MS U-Pb年龄结果显示该套岩石形成年龄为521.3±3.3 Ma, 为早寒武世产物. 在岩石类型上, 玄武岩和英安岩属于低钾岩石系列, 玄武岩相对富集Rb、Ba、K、LREE, 而亏损Nb-Ta、Th, 源于受早期俯冲洋/陆壳流体交代的亏损地幔熔融源区. 英安岩表现出富集LILE、Th, 亏损Nb-Ta、Sr和Ti.两类岩石表现出不同的稀土元素配分模式和微量元素特征, 并缺乏分异演化的趋势, 反映二者的成因存在差别. 结合其地球化学特征和实验岩石学资料, 认为英安岩为玄武岩底侵提供热, 基性下地壳在相对低压条件下部分熔融形成的. 这套"双峰式"火山岩组合证实区域上早古生代存在一次大陆拉张环境下的构造-岩浆事件. 结合区域上研究资料, 古元古代布伦阔勒岩群至少包含以下3个组成部分: (1)古元古代布伦阔勒岩群; (2)印支期高压变质岩体; (3)早古生代火山-沉积岩组合.

       

    • 图  1  新疆塔什库尔干地区地质

      Fig.  1.  Geological sketch map of Taxkorgan region in Xinjiang

      图  2  塔阿西一带布伦阔勒岩群火山岩地质剖面

      Fig.  2.  A profile of the volcanic rocks from the Bulunkuole Group in Ta'axi region

      图  3  布伦阔勒岩群玄武岩与英安岩互层产出特征

      Fig.  3.  The characteristic of basalt interbedded with dacite of the Bulunkuole Group

      图  4  布伦阔勒岩群火山岩K2O+Na2O-SiO2 (a), SiO2-Nb/Y (b), FeOT/MgO-SiO2 (c) and A/NK-A/CNK (d)图解

      Fig.  4.  K2O+Na2O vs. SiO2 (a), SiO2 vs. Nb/Y(b), FeOT/MgO vs. SiO2 (c) and A/NK-A/CNK (d) diagrams of the Bulunkuole Group volcanic rocks

      图  5  布伦阔勒岩群火山岩MgO对主、微量元素变化图

      Fig.  5.  MgO vs. major element and trace element plots of the volcanic rocks in the Bulunkuole Group

      图  6  布伦阔勒岩群火山岩稀土元素配分模式(a)和微量元素蛛网图(b).

      球粒陨石引自Taylor and McLennan (1985);原始地幔标准化值、OIB和MORB数据引自Sun and McDonough (1989)

      Fig.  6.  Chondrite-normalized REE patterns (a) and primitive mantle (PM) normalized spidergrams (b)

      图  7  布伦阔勒岩群英安岩锆石CL图像和U-Pb谐和图(10X20-8)

      Fig.  7.  CL images of zircons and U-Pb concordia diagram from a dacite sample in the Bulunkuole Group (10X20-8)

      图  8  布伦阔勒岩群玄武岩Th/Nb-Zr/Nb图解

      Fig.  8.  Th/Nb vs.Zr/Nb diagram of basalts from the Bulunkuole Group

      图  9  布伦阔勒岩群火山岩SiO2-Nb/La和La-La/Sm图

      Fig.  9.  SiO2 vs. Nb/La and La vs. La/Sm diagrams of the volcanic rocks in the Bulunkuole Group

      表  1  布伦阔勒岩群火山岩主量元素(%)和微量元素(10-6)分析结果

      Table  1.   Major (%) and trace element (10-6) compositions of the Bulunkuole Group volcanic rocks

      样号岩石类型 10X20-1玄武岩 10X20-2玄武岩 10X20-3玄武岩 10X20-4英安岩 10X20-5英安岩 10X20-6英安岩 10X20-7英安岩 10X20-8英安岩
      SiO2 52.02 50.28 51.80 68.57 68.52 69.10 68.32 68.54
      Al2O3 14.87 15.54 14.69 14.30 14.22 14.55 14.45 14.13
      Fe2O3 3.74 4.78 3.76 2.96 2.69 2.70 2.95 3.80
      FeO 6.87 7.07 7.29 2.30 2.80 2.39 2.01 2.33
      CaO 8.43 7.95 9.35 2.06 1.68 1.09 2.23 0.96
      MgO 5.78 6.03 5.84 0.94 0.96 0.96 0.71 1.09
      K2O 0.74 0.41 0.82 2.13 2.41 0.37 1.40 0.36
      Na2O 4.21 4.54 3.13 5.12 5.07 7.45 5.94 7.36
      TiO2 1.43 1.49 1.41 0.61 0.60 0.59 0.61 0.59
      P2O5 0.22 0.22 0.22 0.18 0.18 0.21 0.18 0.16
      MnO 0.31 0.34 0.37 0.05 0.05 0.04 0.04 0.04
      LOI 1.79 1.86 1.81 1.27 1.33 0.83 1.92 1.03
      Total 100.41 100.51 100.49 100.49 100.51 100.28 100.76 100.39
      FeOT 10.38 11.53 10.82 5.00 5.26 4.85 4.72 5.79
      MgO# 0.50 0.49 0.50 0.25 0.25 0.26 0.22 0.25
      La 10.20 9.90 11.00 15.70 16.40 15.40 15.40 14.50
      Ce 22.10 21.20 24.10 31.00 31.90 32.30 30.20 29.10
      Pr 3.27 3.15 3.50 3.98 4.16 3.93 3.87 3.78
      Nd 15.10 14.60 16.20 16.60 17.20 16.00 16.00 16.10
      Sm 4.37 4.00 4.49 3.53 3.71 3.30 3.55 3.51
      Eu 1.47 1.42 1.61 1.04 1.07 1.02 0.94 1.15
      Gd 4.90 4.72 5.26 3.54 3.57 3.34 3.39 3.67
      Tb 0.84 0.81 0.87 0.57 0.53 0.50 0.55 0.58
      Dy 5.48 5.47 5.80 3.39 3.28 2.98 3.17 3.44
      Ho 1.21 1.20 1.30 0.72 0.68 0.65 0.71 0.74
      Er 3.30 3.12 3.39 1.92 1.87 1.69 1.95 1.88
      Tm 0.54 0.50 0.52 0.32 0.30 0.26 0.32 0.29
      Yb 3.22 3.07 3.34 1.97 1.91 1.62 1.86 1.89
      Lu 0.51 0.47 0.51 0.32 0.31 0.27 0.29 0.29
      Y 30.70 29.90 31.90 18.80 17.70 17.20 18.70 18.90
      Pb 14.30 24.40 13.40 40.00 12.40 6.20 15.10 18.20
      Cr 122.00 156.00 128.00 9.10 6.80 7.30 11.70 7.10
      Ni 30.00 33.50 32.60 3.10 3.30 2.80 4.50 3.10
      Co 35.40 35.30 39.20 3.60 3.60 2.00 2.80 2.60
      Rb 21.20 7.40 25.10 23.70 27.80 9.10 17.00 9.20
      Sr 200.00 232.00 280.00 54.00 47.00 56.00 64.00 53.00
      Ba 291.00 124.00 277.00 1 140.00 1 260.00 198.00 730.00 181.00
      V 301.00 311.00 301.00 69.00 70.00 71.00 67.00 73.00
      Sc 39.10 40.50 39.80 18.70 20.90 16.60 17.30 20.00
      Nb 4.51 4.89 4.37 4.71 4.80 4.85 4.92 4.87
      Ta 0.60 0.58 0.57 0.44 0.43 0.41 0.40 0.44
      Zr 91.00 86.00 89.00 131.00 134.00 134.00 127.00 128.00
      Hf 1.98 1.77 1.85 2.73 2.78 2.90 2.75 2.91
      Ga 18.30 20.10 19.70 17.70 17.80 15.80 16.60 16.60
      U 0.46 0.44 0.44 1.28 1.27 1.3 1.32 1.21
      REE 76.51 73.60 81.89 84.60 86.89 83.26 82.20 80.92
      (La/Sm)N 1.47 1.55 1.54 2.80 2.78 2.94 2.73 2.60
      (La/Yb)N 2.14 2.17 2.23 5.39 5.80 6.42 5.59 5.18
      (Dy/Yb)N 1.11 1.16 1.13 1.12 1.12 1.20 1.11 1.18
      Eu/Eu* 0.97 1.00 1.01 0.89 0.89 0.93 0.82 0.97
      La/Nb 2.30 2.00 2.50 3.30 3.40 3.20 3.10 3.00
      Zr/Nb 20.10 17.60 20.30 27.80 27.90 27.60 25.80 26.30
      Th/Nb 0.09 0.17 0.12 0.94 0.95 0.88 0.92 0.93
      Th/La 0.04 0.09 0.05 0.28 0.28 0.28 0.30 0.31
      下载: 导出CSV

      表  2  布伦阔勒岩群英安岩(10X20-8)锆石U-Pb定年结果

      Table  2.   Zircon U-Pb dataing results of 10X20-8 dacite of the Bulunkuole Group

      样品点 Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/235U 206Pb/238U 208Pb/232Th
      比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ
      10X20-1-1 613 1 361 0.45 0.063 3 0.001 0 0.738 4 0.011 5 0.084 7 0.000 7 0.500 2 0.028 3 561 7 524 4 8 198 381
      10X20-1-2 355 855 0.42 0.060 7 0.001 1 0.703 1 0.012 1 0.084 1 0.000 6 0.440 4 0.025 5 541 7 520 4 7 375 357
      10X20-1-3 723 1 194 0.61 0.058 1 0.000 8 0.672 8 0.010 1 0.084 1 0.000 7 0.535 7 0.025 1 522 6 520 4 8 671 330
      10X20-1-4 423 1 151 0.37 0.056 9 0.000 8 0.658 8 0.010 3 0.084 0 0.000 7 0.550 2 0.026 8 514 6 520 4 8 860 350
      10X20-1-5 600 1 369 0.44 0.057 2 0.000 8 0.666 8 0.010 0 0.084 6 0.000 8 0.620 1 0.026 9 519 6 523 5 9 752 335
      10X20-1-6 765 1 251 0.61 0.058 3 0.000 8 0.681 9 0.010 0 0.084 6 0.000 6 0.446 7 0.027 5 528 6 524 3 7 463 384
      10X20-1-7 746 1 424 0.52 0.057 1 0.000 8 0.662 6 0.009 8 0.084 0 0.000 6 0.481 6 0.025 8 516 6 520 4 7 945 351
      10X20-1-8 548 1 048 0.52 0.063 2 0.001 2 0.740 1 0.014 5 0.084 7 0.000 6 0.375 0 0.028 0 562 8 524 4 6 437 412
      10X20-1-9 489 1 165 0.42 0.061 4 0.000 9 0.717 1 0.011 0 0.084 6 0.000 7 0.508 7 0.028 4 549 6 524 4 8 312 380
      10X20-1-10 733 1 345 0.54 0.061 9 0.001 0 0.722 0 0.012 4 0.084 4 0.000 7 0.503 3 0.028 6 552 7 522 4 8 240 385
      下载: 导出CSV

      表  3  N-MORB、富集地幔和地壳各单元比值组成

      Table  3.   The composition of N-MORB, enrichment mantle and crust

      端元组分 Zr/Nb比值 Th/Nb比值
      N-MORB 30 0.07
      富集地幔 3.5~13.1 0.09~0.17
      大陆地壳 16.2 0.44
      注:数据来源于来源于徐义刚(1999).
      下载: 导出CSV
    • [1] Brophy, J.G., 1991. Composition Gaps, Critical Crystallinity and Fractional Crystallization in Orogenic (Calc-Alkaline) Magmatic Systems. Contributions to Mineralogy and Petrology, 109(2): 17-382. doi: 10.1007/BF00306477
      [2] Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing (in Chinese).
      [3] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. doi: 10.1038/347662a0
      [4] Doe, B.R., Leeman, W.P., Christiansen, R.L., et al., 1982. Lead and Strontium Isotopes and Related Trace Elements as Genetic Tracers in the Upper Cenozoic Rhyolite-Basalt Association of the Yellowstone Plateau Volcanic Field. Journal of Geophysics Research, 87(B6): 4785-4806. doi: 10.1029/JB087iB06p04785
      [5] Ducea, M.N., Lutkov, V., Minaev, V.T., et al., 2003. Building the Pamirs: The View from the Underside. Geology, 31(10): 849-852. doi: 10.1130/G19707.1v.31No.10p.849-852
      [6] Dupuy, C., Liotard, J.M., Distal, J., 1992. Zr/Hf Fractionation in Intraplate Basaltic Rocks: Carbonate Metasomatism in the Mantle Source. Geochimica et Cosmochimica Acta, 56: 2417-2423. doi: 10.1016/0016-7037(92)90198-R
      [7] Foley, S., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin Potassic Alkaline Magmas. Lithos, 28(3-6): 435-453. doi: 10.1016/0024-4937(92)90018-T
      [8] Gallagher, K., Hawkesworth, C., 1992. Dehydration Melting and the Generation of Continental Flood Basalts. Nature, 358: 57-59. doi: 10.1038/358057a0
      [9] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002. Analysis of Forty-Two Major and Trace Elements of USGS and NISTSRM Glasses by LA-ICP-MS. Geostandard Newsletters, 26: 181-195. doi: 10.1111/j.1751-908X.2002.tb00886.x
      [10] Gao, X.F., Guo, F., Fan, W.M., et al., 2005. Origin of Late Mesozoic Intermediate-Felsic Volcanic Rocks from Southern Da Hinggan Mountain, NE China. Acta Petrologica Sinica, 21(3): 737-748 (in Chinese with English abstract). http://www.oalib.com/paper/1472085
      [11] Gao, X.F., Li, W.Y., Ye, M.F., et al., 2010. Geochemistry of the Amphibolites of Hualong Group in the Eastern Segment of Middle-Qilian Massif and Its Tectonic Significance. Acta Petrologica et Mineralogica, 29(5): 507-515 (in Chinese with English abstract). http://www.researchgate.net/publication/284033785_Geochemistry_of_amphibolite_in_Hualong_Group_of_eastern_middle_Qilian_Massif_and_its_tectonic_significance
      [12] Geist, D., Howard, K.A., Larson, P., 1995. The Generation of Oceanic Rhyolites by Crustal Fractionation: The Basalt-Rhyolite Association at Volcano Alcedo, Galapagos Archipelago. Journal of Petrology, 36(4): 965-982. doi: 10.1093/petrology/36.4.965
      [13] Grove, T.L., Donnelly-Nolan, J.M., 1986. The Evolution of Young Silicic Lavas at Medicine Lake Volcano-California: Implications for the Origin of Compositional Gaps in Calc-Alkaline Series Lavas. Contributions to Mineralogy and Petrology, 92: 281-302. doi: 10.1007/BF00572157
      [14] Guo, F., Fan, W.M., Wang, Y.J., et al., 2001. Petrogenesis of the Late Mesozoic Bimodal Volcanic Rocks in the Southern Da Hinggan Mts, China. Acta Petrologica Sinica, 17(1): 161-168 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=4917727
      [15] Guo, F., Nakamuru, E., Fan, W.M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. doi: 10.1093/petrology/egl077
      [16] Hermann, J., Rubatto, D., Korsakov, A., et al., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82. doi: 10.1007/s004100000218
      [17] Hildreth, W., 1981. Gradients in Silicis Magma Chambers: Implications for Lithospheric Magmatism. Journal of Geophysical Research, 86: 10153-10192. doi: 10.1029/JB086iB11p10153
      [18] Hoang, N., Flower, M., 1998. Petrogenesis of Cenozoie Basalts from Vietnam: Implication of Origin of A"Diffusion Igneous Province". Journal of Petrology, 39(3): 369-395. doi: 10.1093/petroj/39.3.369
      [19] Hooper, P.R., Hawkesworth, C.J., 1993. Isotopic and Geochemical Constraints on the Origin and Evolution of Columbia River Basalt. Journal of Petrology, 34(6): 1203-1246. doi: 10.1093/petrology/34.6.1203
      [20] Huppert, H.E., Sparks, R.S.J., 1988. The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust. Journal of Petrology, 29(3): 599-624. doi: 10.1093/petrology/29.3.599
      [21] Jaques, A.L., Green, D.H., 1980. Anhydrous Melting of Peridotite at 0-15 kb Pressure and the Genesis of Tholeiitic Basalts. Contributions to Mineralogy and Petrology, 73(3): 287-310. doi: 10.1007/BF00381447
      [22] Ji, W.H., Li, R.S., Chen, S.J., et al., 2011. The Discovery of Palaeoproterozoic Volcanic Rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and Its Geological Significance. Science China Earth Sciences, 54(1): 61-72. doi: 10.1007/s11430-010-4043-7
      [23] Jiang, C.F., Wang, Z.Q., Li, J.Y., et al., 2000. Opening and Closing Tectonics of Central Orogenic Belt. Geological Publishing House, Beijing (in Chinese).
      [24] Jiang, J.H., Wang, R.J., Qu, X.M., et al., 2011. Crustal Extension of the Banggong Lake Arc Zone, Western Tibetan Plateau, after the Closure of the Tethys Ocanic Basin. Earth Science—Journal of China University of Geosciences, 36(6): 1021-1032 (in Chinese with English abstract). http://www.researchgate.net/publication/287486701_Crustal_extension_of_the_Bangong_lake_arc_zone_western_Tibetan_plateau_after_the_closure_of_the_Tethys_oceanic_basin
      [25] Kushiro, I., 2001. Partial Melting Experiments on Peridotite and Origin of Mid-Ocean Ridge Basalt. Annual Review of Earth and Planetary Sciences, 29: 71-107. doi: 10.1146/annurev.earth.29.1.71
      [26] Liang, Y.P., Zhu, J., Ci, Q., et al., 2010. Zircon U-Pb Ages and Geochemistry of Volcanic Rock from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau. Earth Science—Journal of China University of Geosciences, 35(2): 211-223 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.021
      [27] Lu, S.N., Yu, H.F., Zhao, F.Q., 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Geological Publishing House, Beijing (in Chinese).
      [28] Ludwig, K.R., 1991. Isoplot: A Plotting and Regression Program for Radiogenic-Isotope Data. Open File Report, U.S.G.S., 88-557.
      [29] Menzies, M.A., Rogers, N., Tindle, A.G., et al., 1987. Metasomatic and Enrichment Processes in Lithospheric Peridotites, an Effect of Asthenosphere-Lithosphere Interaction. In: Menzies, M.A., Hawkesworth, C.J., eds., Mantle Metasomatism. Academic Press, London, UK, 313-361.
      [30] Pan, G.T., Wang, L.Q., Yin, F.G., et al., 2004. Charm of Landing of Plate Tectonics on the Continent as Viewed from the Study of the Archipelagic Arc-Basin System. Geological Bulletin of China, 23(9-10): 933-939 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2015.htm
      [31] Pan, Y.S., Zhou, W.M., Xu, R.H., et al., 1996. Geological Characteristics and Evolution of the Kunlun Mountains Region during the Early Paleozoic. Science in China (Series D), 39: 337-347. http://www.cnki.com.cn/Article/CJFDTotal-JDXG199604000.htm
      [32] Pan, Y.S., 1989. A Preliminary Study on the Regionalization of the Structures in the Kunlun Mountains Region. Journal of Nature Resource, 4(3): 196-203 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZX198903001.htm
      [33] Pan, Y.S., 2000. Geological Evolution of the Karakorum-Kunlun Mountains. Science Press, Beijing, 21-98 (in Chinese).
      [34] Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491
      [35] Qin, X.F., Xu, Y.G., Zhang, H.H., et al., 2008. Petrogenetic Diversity of Continental Subalkaline Volcanic Rocks: An Example from the Dunhua-Mishan-Dongning Volcanic Belt. Acta Petrologica Sinica, 24(11): 2501-2514 (in Chinese with English abstract). http://www.oalib.com/paper/1473594
      [36] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
      [37] Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemite and Tonalities. Precambrian Research, 51: 1-25. doi: 10.1016/0301-9268(91)90092-O
      [38] Song, Y., Frey, F.A., Zhi, X.C., 1990. Isotopic Characteristics of Hannouba Basalts, Eastern China: Implications for Their Petrogenesis and the Composition of Subcontinental Mantle. Chemical Geology, 85: 35-52. doi: 10.1016/0009-2541(90)90122-N
      [39] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes. In: Saunder, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [40] Susana, L., Antonio, C., 2001. Determination of the Fluid-Absent Solidus and Supersolidus Phase Relationships of MORB-Derived Amphibolites in the Range 4-14 kbar. American Mineralogist, 86: 1396-1403. doi: 10.2138/am-2001-11-1208
      [41] Takahashi, E., Shimazaki, T., Tsuzaki, Y., et al., 1993. Melting Study of a Peridotite KLB-1 and the Origin of Basaltic Magmas. Philos. Trans. R. Soc. Lond. A, 342(1663): 105-120. doi: 10.1098/rsta.1993.0008
      [42] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, California, (1): 312. http://doc63.dhjkbooks.com/the-continental-crust-its-composition-and-evolution-_P_1503m.pdf
      [43] Wang, Y., Qian, Q., Liu, L., et al., 2000. Major Geochemical Characteristics of Bimodal Volvanic Rocks in Different Geochemical Environments. Acta Petrologica Sinica, 16(2): 169-173 (in Chinese with English abstract). http://www.researchgate.net/publication/230585284_Major_geochemical_characteristics_of_bimodal_volcanic_rocks_in_different_geochemical_environments
      [44] Wilhelm, S., Hans, A.S., 1997. Partial Fusion of Basic Granulites at 5 to 15 kbar: Implications for the Origin of TTG Magmas. Contributions to Mineralogy and Petrology, 127(1-2): 30-45. doi: 10.1007/s004100050263
      [45] Xiao, P.X., Gao, X.F., Kang, L., et al., 2011. Redefine Bulunkuole Group in Eastern Pamirs Syntaxis and Its Signification from the Evidence of LA-ICP-MS Isotope Dating of Detrita Zircon. Goldschmidt Conference Abstracts, Prague, 2190.
      [46] Xiao, W.J., Hou, Q.L., Li, J.L., et al., 2000. Tectonic Facies and the Archipelago-Accretion Process of the West Kunlun, China. Science in China (Series D), 43(S1): 134-143. doi: 10.1007/BF02911939
      [47] Xiao, W.J., Windley, B.F., Liu, D.Y., et al., 2005. Paleozoic Accretionary Tectonics of the Western Kunlun Range, China: New SHRIMP Zircon Ages from the Kudi Ophiolite and Associated Granites, and Implications for the Crustal Growth of Central Asia. Journal of Geology, 113: 687-705. doi: 10.1086/449326
      [48] Xiong, X.L., Adam, J., Green, T.H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3-4): 339-359. doi: 10.1016/j.chemgeo.2005.01.014
      [49] Xu, Y.G., Ma, J.L., Feigenson, M.D., et al., 2005. Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Tholeiitic and Alkali Basalts from Datong, Western North China Craton. Chemical Geology, 224(4): 247-271. doi: 10.1016/j.chemgeo.2005.08.004
      [50] Xu, Y.G., 1999. Continental Basaltic Magmatism in Extensional Setting: Nature and Dynamic Processes. In: Zheng, Y.F., ed., Advances in Chemical Geodynamics. Science Press, Beijing, 119-167 (in Chinese).
      [51] Yang, W.Q., Liu, L., Cao, Y.T., et al., 2010. Geochronological Evidence of Indosinian (High-Pressure) Metamorphic Event and Its Tectonic Significance in Taxkorgan Area of the Western Kunlun Mountains, NW China. Science China Earth Science, 53(10): 1445-1459. doi: 10.1007/s11430-010-4081-1
      [52] Yuan, C., Sun, M., Zhou, M.F., et al., 2003. Absence of the Archean Basement for the South Kunlun Block: Nd-Sr-O Isotopic Evidence from Granitoids. The Island Arc, 12(1): 13-21. doi: 10.1046/j.1440-1738.2003.00376.x
      [53] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411-2421.
      [54] Zhang, C.L., Lu, S.N., Yu, H.F., et al., 2007. Tectonic Evolution of Western Kunlun Orogenic Belt in Northern Qinghai-Tibet Plateau: Evidence from Zircon SHRIMP and LA-ICP-MS U-Pb Geochronology. Science in China (Series D), 50(6): 825-835. doi: 10.1007/s11430-007-2051-z
      [55] Zhang, H.F., 2005. Transformation of Lithospheric Mantle through Peridotite-Melt Reaction: A Case of Sino-Korean Craton. Earth and Planetary Science Letters, 237(3-4): 768-780. doi: 10.1016/j.epsl.2005.06.041
      [56] Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2008. Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, North China: Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt. Chemical Geology, 249(3-4): 262-281. doi: 10.1016/j.chemgeo.2008.01.005
      [57] Zhi, X.C., Song, Y., Frey, F.A., et al., 1990. Geochemistry of Hannouba Basalts, Eastern China: Constrians in the Origin of Continental Alkali and Tholeiitic Basalt. Chemical Geology, 88(1-2): 1-33. doi: 10.1016/0009-2541(90)90101-C
      [58] 高晓峰, 李文渊, 叶美芳, 等, 2010. 中祁连东段化隆群中斜长角闪岩地球化学特征及构造意义. 岩石矿物学杂志, 29(5): 507-515. doi: 10.3969/j.issn.1000-6524.2010.05.006
      [59] 高晓峰, 郭锋, 范蔚茗, 等, 2005. 南兴安岭晚中生代中酸性火山岩的岩石成因. 岩石学报, 21(3): 737-748. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503015.htm
      [60] 郭锋, 范蔚茗, 王岳军, 等, 2001. 大兴安岭南段晚中生代双峰式火山作用. 岩石学报, 17(1): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101016.htm
      [61] 姜春发, 王宗起, 李锦轶, 2000. 中央造山带开合构造. 北京: 地质出版社.
      [62] 江军华, 王瑞江, 曲晓明, 等, 2011. 青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用. 地球科学——中国地质大学学报, 36(6): 1021-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106008.htm
      [63] 梁银平, 朱杰, 次邛, 等, 2010. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征. 地球科学——中国地质大学学报, 35(2): 211-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002004.htm
      [64] 陆松年, 于海峰, 赵凤清, 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社.
      [65] 潘桂棠, 王立全, 尹福光, 等, 2004. 从多岛弧盆系研究实践看板块构造登陆的魅力. 地质通报, 23(9-10): 933-939. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2015.htm
      [66] 潘裕生, 1989. 昆仑山区构造区划初探. 自然资源学报, 4(3): 196-203. doi: 10.3321/j.issn:1000-3037.1989.03.002
      [67] 潘裕生, 2000. 喀喇昆仑山-昆仑山地区地质演化. 北京: 科学出版社.
      [68] 秦秀峰, 徐义刚, 张辉煌, 等, 2008. 大陆亚碱性火山岩的成因多样性: 以敦化-密山和东宁火山岩带为例. 岩石学报, 24(11): 2501-2514. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811006.htm
      [69] 王焰, 钱青, 刘良, 等, 2000. 不同构造环境中双峰式火山岩的主要特征. 岩石学报, 16 (2): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002003.htm
      [70] 新疆维吾尔自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社.
      [71] 徐义刚, 1999. 拉张环境中的大陆玄武岩浆作用: 性质和动力学过程. 见: 郑永飞编, 化学地球动力学. 北京: 科学出版社, 119-167.
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  2956
    • HTML全文浏览量:  171
    • PDF下载量:  362
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-11-29
    • 刊出日期:  2013-06-01

    目录

      /

      返回文章
      返回