• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    随钻脉冲中子-伽马密度测井响应数值模拟

    张锋 袁超 刘军涛 贾岩

    张锋, 袁超, 刘军涛, 贾岩, 2013. 随钻脉冲中子-伽马密度测井响应数值模拟. 地球科学, 38(5): 1116-1120. doi: 10.3799/dqkx.2013.110
    引用本文: 张锋, 袁超, 刘军涛, 贾岩, 2013. 随钻脉冲中子-伽马密度测井响应数值模拟. 地球科学, 38(5): 1116-1120. doi: 10.3799/dqkx.2013.110
    ZHANG Feng, YUAN Chao, LIU Jun-tao, JIA Yan, 2013. Numerical Simulation on Pulsed Neutron-Gamma Ray Density Logging Response in Logging while Drilling. Earth Science, 38(5): 1116-1120. doi: 10.3799/dqkx.2013.110
    Citation: ZHANG Feng, YUAN Chao, LIU Jun-tao, JIA Yan, 2013. Numerical Simulation on Pulsed Neutron-Gamma Ray Density Logging Response in Logging while Drilling. Earth Science, 38(5): 1116-1120. doi: 10.3799/dqkx.2013.110

    随钻脉冲中子-伽马密度测井响应数值模拟

    doi: 10.3799/dqkx.2013.110
    基金项目: 

    国家自然科学基金 40784065

    国家重大油气专项 2011ZX0520-002

    国家重大油气专项 2011ZX05009-003

    山东省自然科学基金 ZR2012DM002

    中石油创新基金 2012D-5006-0302

    中央高校基本科研业务费专项资金 10CX03001A

    详细信息
      作者简介:

      张锋(1970-),男,教授,博士,从事核测井方法、核测井数据处理及蒙特卡罗模拟研究.E-mail: zhfxy_cn@upc.edu.cn

    • 中图分类号: P631

    Numerical Simulation on Pulsed Neutron-Gamma Ray Density Logging Response in Logging while Drilling

    • 摘要: 随钻过程中采用D-T可控中子源和2个NaI晶体探测器系统,记录两个探测器的非弹性散射和俘获伽马射线,采用俘获伽马计数比值进行含氢指数校正后,建立非弹性散射伽马计数比和地层密度的响应关系,从而实现脉冲中子-伽马密度测井.利用蒙特卡罗方法模拟地层条件下非弹性散射和俘获伽马分布,得到非弹伽马计数与地层密度和含氢指数都有关,但近、远探测器俘获伽马计数比反映含氢指数灵敏度高,利用其对含氢指数校正后就可以得到非弹伽马计数与地层密度的关系;通过二元回归方法得出地层密度校正后的响应公式,校正后视密度和真密度值相差很小.研究结果表明,在随钻过程中利用脉冲中子伽马测井方法可以确定地层密度.

       

    • 图  1  蒙特卡罗计算模型

      Fig.  1.  MCNP calculation model

      图  2  近、远探测器非弹、俘获伽马射线计数比值与地层密度关系

      Fig.  2.  Relationship between formation density and near-far detector's inelastic, captured gamma ratio

      图  3  近、远探测器非弹、俘获伽马射线计数比值与含氢指数关系

      Fig.  3.  Relationship between HI and near-far detector's gamma ratio

      图  4  含氢指数对地层密度的影响

      Fig.  4.  HI influence on formation density

      表  1  含氢指数校正前后的对比

      Table  1.   Comparison before and after hydrogen index correction

      地层密度(g/cm3) 校正前视密度(g/cm3) 校正前相对误差(%) 校正后视密度(g/cm3) 校正后相对误差(%)
      1.023 6 1.357 3 32.610 1.057 1 -3.280
      1.402 6 1.670 3 19.090 1.400 5 0.150
      1.516 7 1.767 2 16.520 1.523 0 -0.420
      1.653 3 1.876 9 13.520 1.661 5 -0.500
      1.714 5 1.909 2 11.360 1.701 2 0.770
      1.836 8 2.034 6 10.770 1.870 8 -1.850
      1.902 5 2.065 4 8.560 1.910 8 -0.440
      2.036 0 2.123 5 4.300 2.014 9 1.040
      2.135 7 2.187 9 2.450 2.106 2 1.380
      2.240 7 2.277 2 1.630 2.252 4 -0.520
      2.402 5 2.341 0 -2.560 2.391 6 0.460
      2.485 0 2.348 0 -5.510 2.434 1 2.050
      2.518 0 2.407 0 4.400 2.502 0 0.617
      2.567 5 2.435 0 5.253 2.560 0 0.304
      2.600 5 2.449 0 5.812 2.597 0 0.139
      2.633 5 2.466 0 6.364 2.635 0 -0.041
      注:ρa为视密度;ρ为真密度;(ρa-ρ)/ρ为相对误差.
      下载: 导出CSV
    • [1] Aitken, J.D., Adolph, R., Evans, M., et al., 2002. Radiation Sources in Drilling Tools: Comprehensive Risk Analysis in the Design, Development and Operation of LWD Tools. SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Malaysia.
      [2] Briesmeister, J.F., 2000. MCNPTM—A General Monte Carlo N-Particle Transport Code. Los Alamos National Laboratory Press, Los Alamos.
      [3] Committee on Radiation Source and Replacement, 2008. National Research Council. National Academies Press, Washington D.C. .
      [4] Huang, L.J., 1985. Radioactivity Logging Theory. Petroleum Industry Press, Beijing(in Chinese).
      [5] Jacobson, L., Durbin, D., Reed, S., et al., 2004. An Improved Formation Density Measurement Using PNC Tools. SPE Annual Technical Conference and Exhibition, Houston.
      [6] Mirto, E., Weller, G., El-Halawani, T., et al., 2006. New Developments in Sourceless Logging-While-Drilling Formation Evaluation: A Case Study From Southern Italy. SPE EUROPEC/EAGE Annual Conference and Exhibition, Austria.
      [7] Neuman, C.H., Sullivan, M.J., Belanger, D.L., et al., 1999. An Investigation of Density Derived from Pulsed Neutron Capture Measurements. SPE Annual Technical Conference and Exhibition, Houston.
      [8] Odom, R.C., Bailey, S.M., Wilson, R.D., et al., 1999. Pulsed Neutron Density Measurements: Modeling the Depth of Investigation and Cased-Hole Wellbore Uncertainties. SPWLA Annual Logging Symposium, USA.
      [9] Odom, R.C., Tiller, D.E., Wilson, R.D., et al., 2000. Improvements in a Through-Casing Pulsed-Neutron Density Log. SPE Annual Technical Conference and Exhibition, Louisiana.
      [10] Peng, H., 2009. Review on Progress of Radioactive Well Logging Technology in 2000-2008. Well Logging Technology, 33(1): 1-8(in Chinese with English abstract). http://www.cqvip.com/QK/91848A/200901/29789980.html
      [11] Quirein, J.A., Smith, H., Chen, D.D., et al., 2005. Formation Density Prediction Using Pulsed Neutron Capture Tools. SPWLA Annual Logging Symposium, USA.
      [12] Weller, G., Galvin, S., EI-Halawani, T., et al., 2005. A New Integrated LWD Platform Delivers Improved Drilling Efficiency, Well Placement, and Formation Evaluation Services. Offshore Europe, United Kingdom.
      [13] 黄隆基, 1985. 放射性测井原理. 北京: 石油工业出版社.
      [14] 彭琥, 2009.2000—2008年放射性测井技术进展评述. 测井技术, 33(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200901002.htm
    • 加载中
    图(4) / 表(1)
    计量
    • 文章访问数:  2955
    • HTML全文浏览量:  117
    • PDF下载量:  553
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-10-10
    • 刊出日期:  2013-09-15

    目录

      /

      返回文章
      返回