Evaluation of Acid Neutralization Capacity of Rocks
-
摘要: 岩石的酸中和能力(acid neutralization capacity,ANC)是静态产酸预测中最具争议的一个重要参数.利用4种酸中和能力评价方法对山西省西山煤田石炭二叠纪含煤岩系的12个岩石样品进行了评价.研究表明,过滤的Sobek ANC方法能够有效消除反应性黄铁矿对ANC测定的影响,比修正的Sobek ANC方法计算的ANC值更准确;持续的Sobek ANC方法只对泥岩和黄铁矿样品具有一定的实际意义.矿物ANC计算法适宜评价冒泡反应强烈的灰岩和菱铁矿样品,而泥岩和砂岩的矿物ANC计算值不能反映样品的酸中和能力.灰岩和菱铁矿样品具有很强的酸中和能力,且ANC值不随时间变化;砂岩和泥岩的ANC值较低,其ANC值随时间逐渐降低.Abstract: Acid neutralization capacity (ANC) of rocks is an important parameter of static acid generating prediction, and it is also the most controversial parameter. Twelve typical country rocks of Permo-Carboniferous coal-bearing measures from Xishan coal field at Shanxi Province are studied by four evaluation methods of acid neutralization capacity. Filtered Sobek ANC test can effectively eliminate effect of reactive pyrite for ANC determination. The ANC value based on filtered Sobek ANC test is more accurate than that of Modified Sobek ANC test. Sequential Sobek ANC tests are feasible for mudstone and pyrite samples. Mineralogical ANC method is more suitable for evaluating limestone and siderite samples with strong bubbling reaction, but not for mudstone and sandstone samples. The Mineralogical ANC value can't reflect the real acid neutralization capacity of mudstone and sandstone samples. Limestone and siderite samples have strong acid neutralization capacity, and the ANC values of samples do not change with time. Sandstone and mudstone samples have low ANC values, which decrease with time.
-
表 1 岩石样品的岩性、冒泡程度和ANC值
Table 1. Lithology, degree of bubbling, ANC value of rock samples
样品编号 岩性描述 冒泡程度 ANCM ANCF ANCS GD-L-4 黑色致密块状灰岩 强烈 951.70 957.03 951.73 ML-L-4 灰黑色致密块状灰岩 强烈 663.60 670.96 663.64 GD-I-5 富含黄白色菱铁矿 强烈 153.80 192.60 153.80 GD-S-1 灰白色中粒杂砂岩 中等 96.03 119.80 96.03 GD-M-3 黑色致密硅质泥岩 轻微 46.90 43.88 44.59 ML-B-1 灰白色铝土泥岩 轻微 21.20 29.76 19.03 ML-S-2 褐色中粗粒砂岩 无 8.81 9.73 6.46 ML-M-3 黑色致密块状泥岩 无 6.79 14.98 6.79 GD-CM-2 黑色致密块状泥岩 无 2.89 4.24 -0.83 ML-M-5 灰黑色泥岩 无 -1.81 -1.65 -3.63 GP-P-6 含少量杂质的黄铁矿 无 -2.81 -4.45 -11.82 ML-P-6 含较多杂质的黄铁矿 无 -9.65 -11.24 -20.11 注:ANCM为修正的Sobek ANC实验对应的ANC;ANCF为过滤的Sobek ANC实验对应的ANC;ANCS为持续的Sobek ANC实验(144 h)对应的ANC;ANC值为每吨样品产生的硫酸质量,单位为kg/t. 表 2 岩石样品的矿物种类和含量(%)
Table 2. Mineral species and percentage content (%) of rock samples
样品编号 岩性 石英 斜长石 方解石 白云石 铁白云石 菱铁矿 黄铁矿 粘土矿物 GD-L-4 灰岩 0.7 91.2 8.1 ML-L-4 灰岩 8.6 61.4 16.3 2.1 2.9 8.7 GD-I-5 菱铁矿 0.7 26.2 65.9 7.2 GD-S-1 砂岩 53.2 8.0 8.4 5.7 24.7 GD-M-3 泥岩 39.3 4.4 12.7 2.0 41.6 ML-B-1 铝土泥岩 4.6 0.9 0.4 94.1 ML-S-2 泥质砂岩 40.6 1.8 1.3 56.3 ML-M-3 泥岩 27.0 3.9 2.5 66.6 GD-CM-2 炭质泥岩 34.0 4.2 61.8 ML-M-5 泥岩 30.8 3.3 65.9 GP-P-6 黄铁矿 1.1 98.9 ML-P-6 黄铁矿 1.3 48.6 50.1 表 3 岩石样品的矿物ANCcarb值
Table 3. Mineral ANCcarb value of rock samples
样品编号 GD-L-4 ML-L-4 GD-I-5 GD-S-1 GD-M-3 GP-P-6 岩性 灰岩 灰岩 菱铁矿 砂岩 泥岩 黄铁矿 ANCcarb 980.03 775.35 183.59 82.40 29.68 10.78 样品编号 ML-B-1 ML-S-2 ML-M-3 GD-CM-2 ML-M-5 ML-P-6 岩性 铝土泥岩 砂岩 泥岩 炭质泥岩 泥岩 黄铁矿 ANCcarb 8.82 0 0 0 0 0 注:ANCcarb表示每吨样品产生的硫酸质量,单位为kg/t. -
[1] Hesketh, A.H., Broadhurst, J.L., Bryan, C.G., et al., 2010. Biokinetic Test for the Characterization of AMD Generation Potential of Sulfide Mineral Wastes. Hydrometallurgy, 104(3-4): 459-464. doi: 10.1016/j.hydromet.2010.01.015 [2] Moon, Y., Song, Y., Moon, H-S., 2008. The Potential Acid-Producing Capacity and Factors Controlling Oxidation Tailings in the Guryong Mine, Korea. Environmental Geology, 53(8): 1787-1797. doi: 10.1007/s00254-007-0784-9 [3] Paktunc, A.D., 1999. Mineralogical Constraints on the Determination of Neutralization Potential and Prediction of Acid Mine Drainage. Environmental Geology, 39(2): 103-112. doi: 10.1007/s002540050440 [4] Parbhakar-Fox, A.K., Edraki, M., Walters, S., et al., 2011. Development of a Textural Index for the Prediction of Acid Rock Drainage. Minerals Engineering, 24(12): 1277-1287. doi: 10.1016/j.mineng.2011.04.019 [5] Plante, B., Bussiere, B., Benzaazoua, M., 2012. Static Tests Response on 5 Canadian Hard Rock Mine Tailings With Low Net Acid-Generating Potentials. Journal of Geochemical Exploration, 114: 57-69. doi: 10.1016/j.gexplo.2011.12.003 [6] Shu, W.S., Huang, L.N., Zhang, Z.Q., et al., 1999. The Acid Producing Potential of Some Mine Wastes. China Environmental Science, 19(5): 402-405(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGHJ199905004.htm [7] Shu, W.S., Zhang, Z.Q., Lan, C.Y., 2001. Acid Producing Potential of a Lead/Zinc Mine Tailings at Lechang, Guangdong Province. Environmental Science, 22(3): 113-117(in Chinese with English abstract). http://europepmc.org/abstract/med/11507895 [8] Skousen, J., Renton, J., Brown, H., et al., 1997. Neutralization Potential of Overburden Samples Containing Siderite. Journal of Environmental Quality, 26(3): 673-681. doi: 10.2134/jeq1997.00472425002600030012x [9] Smart. R., Skinner. B., Levay. G., et al., 2002. ARD test handbook. Melbourne: AMIRA International Ltd, 387 [10] Sun, L.N., Jin, C.Z., 2001. Study on Acid-Yielding Potential of the Discarded Rocks and Tailings in Maoling-Wangjia Waizi Gold Deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 20(3): 204-206(in Chinese with English abstract). http://www.researchgate.net/publication/280685215_Study_on_acid-yielding_potential_of_the_discarded_rocks_and_tailings_in_Maoling-Wangjiawaizi_gold_deposits [11] Sun, L.N., Wang, H., Li, Y.S., et al., 2006. Study on Potential Pollution of Original Rocks of the Opencast in the West of Fushun City. Research of Soil and Water Conservation, 13(2): 78-80(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY200602025.htm [12] Usher, B.H., 2009. Upscaling Laboratory Results for Water Quality Prediction at Underground Collieries in South Africa's Highveld Coalfields. Minerals Engineering, 22(1): 43-56. doi: 10.1016/j.mineng.2008.03.016 [13] Weber, P.A., Stewart, W.A., Skinner, W.M., et al., 2004a. Geochemical Effects of Oxidation Products and Framboidal Pyrite Oxidation in Acid Mine Drainage Prediction Techniques. Applied Geochemistry, 19(12): 1953-1974. doi: 10.1016/j.apgeochem.2004.05.002 [14] Weber, P.A., Thomas, J.E., Skinner, W.M., et al., 2004b. Improved Acid Neutralisation Capacity Assessment of Iron Carbonates by Titration and Theoretical Calculation. Applied Geochemistry, 19(5): 687-694. doi: 10.1016/j.apgeochem.2003.09.002 [15] 束文圣, 黄立南, 张志权, 等, 1999. 几种矿业废物的酸化潜力. 中国环境科学, 19(5): 402-405. doi: 10.3321/j.issn:1000-6923.1999.05.005 [16] 束文圣, 张志权, 蓝崇钰, 2001. 广东乐昌铅锌尾矿的酸化潜力. 环境科学, 22(3): 113-117. doi: 10.3321/j.issn:0250-3301.2001.03.025 [17] 孙丽娜, 金成洙, 2001. 猫岭-王家崴子金矿采矿废料的酸化潜力研究. 矿物岩石地球化学通报, 20(3): 204-206. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200103011.htm [18] 孙丽娜, 王洪, 李玉双, 等, 2006. 抚顺煤矿西露天采场裸露岩石的污染潜势研究. 水土保持研究. 13(2): 78-80. doi: 10.3969/j.issn.1005-3409.2006.02.026