• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    含水层中砷活化迁移的水化学与DOM三维荧光证据

    黄爽兵 王焰新 刘昌蓉 曹菱 韩占涛 皮坤福

    黄爽兵, 王焰新, 刘昌蓉, 曹菱, 韩占涛, 皮坤福, 2013. 含水层中砷活化迁移的水化学与DOM三维荧光证据. 地球科学, 38(5): 1091-1098. doi: 10.3799/dqkx.2013.107
    引用本文: 黄爽兵, 王焰新, 刘昌蓉, 曹菱, 韩占涛, 皮坤福, 2013. 含水层中砷活化迁移的水化学与DOM三维荧光证据. 地球科学, 38(5): 1091-1098. doi: 10.3799/dqkx.2013.107
    HUANG Shuang-bing, WANG Yan-xin, LIU Chang-rong, CAO Ling, HAN Zhan-tao, PI Kun-fu, 2013. Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater. Earth Science, 38(5): 1091-1098. doi: 10.3799/dqkx.2013.107
    Citation: HUANG Shuang-bing, WANG Yan-xin, LIU Chang-rong, CAO Ling, HAN Zhan-tao, PI Kun-fu, 2013. Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater. Earth Science, 38(5): 1091-1098. doi: 10.3799/dqkx.2013.107

    含水层中砷活化迁移的水化学与DOM三维荧光证据

    doi: 10.3799/dqkx.2013.107
    基金项目: 

    国家自然科学基金重点项目 40830748

    国家重点基础研究发展计划(973)项目 2010CB428803-4

    中法合作交流项目 40711120189

    详细信息
      作者简介:

      黄爽兵(1982-),男,博士,助理研究员,主要从事地下水污染与防治研究.E-mail: shuangbinghuang@gmail.com; shuangbinghuang@gmail.com

    • 中图分类号: P736

    Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater

    • 摘要: 为了认识高砷地下水中砷活化迁移的生物地球化学机制,对江汉平原地下水氧化还原敏感元素的水化学特征及溶解性有机物(DOM)三维荧光信息进行了研究.水化学研究显示,地下水中的砷与铁的还原和有机质的氧化分解过程有密切关系.水样DOM的三维荧光分析表明,地下水中存在微生物介导下氧化还原过程的反应性有机物组分,其中醌类腐殖质与铁、硫酸盐等的还原反应过程联系紧密.还原、氧化醌类及易降解DOM组分与还原产物、砷的关系进一步显示,砷的活化与微生物介导下的铁氧化物的还原过程联系在一起.在这一过程中,易降解有机物充当电子供体的角色并被消耗,而还原醌与氧化醌则很可能扮演了电子飞行过程中的电子飞行物,"催化"了砷活化的氧化还原过程.

       

    • 图  1  研究区位置、地表沉积物地质成因和地下水采样点分布

      1.全新统冲积;2.全新统冲湖积;3.全新统湖沼积;4.全新统湖积;5.全新统坡积-冲积;6.晚更新统冲湖积;7.地下水采样点

      Fig.  1.  The location and the surface geology in the study area

      图  2  地下水水化学Piper三线图(单位:%)

      Fig.  2.  Piper diagram of groundwater from the study area

      图  3  氧化还原敏感组分浓度关系

      a.NH4+-NO3-;b.S2--SO42-;c.Fe2+-Fediss;d.HCO3--Fediss

      Fig.  3.  Relationship between redox sensitive element species

      图  4  溶解态砷与铁、Eh及有机氮的关系

      a.溶解态As-Fe-Eh三元关系;b.溶解态砷与有机碳关系

      Fig.  4.  Relationship of Eh with dissolved iron and dissolved arsenic with organic carbon

      图  5  铁矿物的饱和指数变化统计描述

      Fig.  5.  Statistical description of saturation index for specific mineral iron species

      图  6  平行因子分析法解析后得到的溶解性有机物组分三维荧光谱图

      Fig.  6.  3D fluorescence spectrum of DOM components determined by PARAFAC method

      图  7  DOM腐殖质醌类组分与溶解态砷的关系

      Fig.  7.  Relationship between humic quinones and dissolved arsenic

      表  1  研究区地下水样品化学指标统计结果

      Table  1.   Statistical descriptions of groundwater chemical parameters

      化学指标 单位 平均值 最大值 最小值
      pH 7.2 8.3 6.5
      Eh mv 16.4 120.3 -96.2
      EC μS/cm 756 1 576 241
      Na+ mg/L 22.8 80.1 3.7
      K+ mg/L 2.21 23.30 0.29
      Ca2+ mg/L 60.4 126.7 19.6
      Mg2+ mg/L 29.2 54.8 5.1
      Fedissolved mg/L 7.48 18.94 0.27
      Fe2+ mg/L 6.04 15.77 0.22
      Asdissolved μg/L 67.22 972.93 0.93
      Cl- mg/L 10.46 74.40 2.23
      HCO3- mg/L 371 563 55
      NO3- mg/L 33.3 119.0 0.8
      SO42- mg/L 20.5 187.9 3.4
      S2- μg/L 12.35 34.00 5.00
      NH4+ mg/L 1.61 13.81 0.04
      SiO2 mg/L 14.31 19.78 6.39
      DOC mg/L 3.1 10.4 0.7
      下载: 导出CSV

      表  2  三维荧光-平行因子分析确定的DOM荧光组分

      Table  2.   DOM components identified by fluorescent EEM & PARAFAC

      组分编号 最大激发/发射波长 相似的有机物化学分类或化合物 参考文献
      陆生腐殖质组分C1 320(250)/416 C10:310(<250)/426;
      阿魏酸: 310(<250)/418
      Stedmon and Markager(2005);
      Cory and McKnight(2005)
      陆生腐殖质组分C2 360(260)/440 未找到性质相似的对应化合物 Stedmon and Markager(2005)
      微生物腐殖质组分C3 270(380)/484 SQ2: 270(375)/462微生物源的还原性醌类 Stedmon and Markager (2005)
      微生物腐殖质组分C4 230(300)/426 Q3:<250(300)/388微生物源的氧化性醌类;
      香草醛: 310/430
      Stedmon and Markager (2005);
      Cory and McKnight (2005)
      蛋白类(色氨酸)组分C5 280/350 C8:270/350,微生物源色氨酸;
      L-色氨酸: 280/356
      Stedmon and Markager (2005);
      Cory and McKnight (2005)
      下载: 导出CSV

      表  3  DOM组分相对浓度与氧化还原敏感组分的相关性

      Table  3.   Correlation relationship between the relative concentration of DOMs and redox sensitive elements

      类别 Asdiss Fediss Fe2+ HCO3- DOC S2-
      类腐殖质C1 0.53 0.37 0.24 0.27 0.79 0.28
      类腐殖质C2 0.54 0.37 0.24 0.30 0.79 0.25
      腐殖类还原醌C3 0.55 0.41 0.47 0.21 0.81 0.42
      腐殖类氧化醌C4 0.47 0.28 - 0.20 0.48 0.06
      易降解DOM C5 0.25 - - - 0.34 -
      注:"-"表示负相关或者无相关,斜黑体表示本研究重点关注的信息. 吻合.这些信息均显示了砷的活化与微生物介导下铁氢氧化物的还原过程有关,而这一过程中,易降解有机物充当电子供体的角色并被消耗,而还原醌与氧化醌则很可能扮演了电子飞行过程中的飞行物,起到"催化"氧化还原反应的作用.
      下载: 导出CSV
    • [1] Cory, R.M., McKnight, D.M., 2005. Fluorescence Spectroscopy Reveals Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic Matter. Environmental Science & Technology, 39(21): 8142-8149. doi: 10.1021/es0506962
      [2] Fendorf, S., Michael, H.A., Van Green, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. doi: 10.1126/science.1172974
      [3] Guo, H.M., Yang, S.Z., Tang, X.H., et al., 2008. Groundwater Geochemistry and Its Implications for Arsenic Mobilization in Shallow Aquifers of the Hetao Basin, Inner Mongolia. Science of the Total Environment, 393(1): 131-144. doi: 10.1016/j.scitotenv.2007.12.025
      [4] Huang, S.B., Wang, Y.X., Cao, L., et al., 2012. Characterization of DOM from Soil in Unsaturated Zone and Its Implications on Arsenic Mobilization into Groundwater. Earth Science—Journal of China University of Geosciences, 37(3): 605-611 (in Chinese with English abstract). http://www.researchgate.net/publication/286804258_Characterization_of_DOM_from_soil_in_unsaturated_zone_and_its_implications_on_arsenic_mobilization_into_groundwater
      [5] Islam, F.S., Gault, A.G., Boothman, C., et al., 2004. Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments. Nature, 430(6995): 68-71. doi: 10.1038/nature02638
      [6] Jiang, J., Kappler, A., 2008. Kinetics of Microbial and Chemical Reduction of Humic Substances: Implications for Electron Shuttling. Environmental Science & Technology, 42(10): 3563-3569. doi: 10.1021/es7023803
      [7] Lawati, W.M.A., Rizoulis, A., Eiche, E., et al., 2012. Characterisation of Organic Matter and Microbial Communities in Contrasting Arsenic-Rich Holocene and Arsenic-Poor Pleistocene Aquifers, Red River Delta, Vietnam. Applied Geochemistry, 27(1): 315-325. doi: 10.1016/j.apgeochem.2011.09.030
      [8] Mladenov, N., Zheng, Y., Miller, M.P., et al., 2010. Dissolved Organic Matter Sources and Consequences for Iron and Arsenic Mobilization in Bangladesh aquifers. Environmental Science & Technology, 44(1): 123-128. doi: 10.1021/es901472g
      [9] Nickson, R.T., McArthur, J.M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413. doi: 10.1016/S0883-2927(99)00086-4
      [10] Nordstrom, D.K., 2002. Public Health-Worldwide Occurrences of Arsenic in Ground Water. Science, 296(5576): 2143-2145. doi: 10.1126/science.1072375
      [11] Smedley, P.L., Kinniburgh, D.G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
      [12] Sracek, O., Bhattacharya, P., Jacks, G., et al., 2004. Behavior of Arsenic and Geochemical Modeling of Arsenic Enrichment in Aqueous Environments. Applied Geochemistry, 19(2): 169-180. doi: 10.1016/j.apgeochem.2003.09.005
      [13] Stedmon, C.A., Markager, S., 2005. Resolving the Variability in Dissolved Organic Matter Fluorescence in a Temperate Estuary and Its Catchment using PARAFAC Analysis. Limnology and Oceanography, 50(2): 686-697. doi: 10.4319/lo.2005.50.2.0686
      [14] Stedmon, C.A., Markager, S., Bro, R., 2003. Tracing Dissolved Organic Matter in Aquatic Environments using a New Approach to Fluorescence Spectroscopy. Marine Chemistry, 82(3-4): 239-254. doi: 10.1016/S0304-4203(03)00072-0
      [15] Wang, Y.X., Su, C.L., Xie, X.J., et al., 2010. The Genesis of High Arsenic Groundwater: A Case Study in Datong Basin. Geology in China, 37(3): 771-780 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201003034.htm
      [16] Yang, P.X., Gao, Z.W., Zhang, J., 2009. Structure Model and Evolution of the Jianghan Basin and Relation with Moderate to Strong Earthquakes. Earthquake, 29(4): 123-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN200904013.htm
      [17] Yuan, J.S., Kang, R.L., Sun, Q.Q., et al., 1985. Investigation Report on Quaternary, Hydrogeology and Environmental Geology at Jianghan Plain Report. Hydrogeology and Engineering team of Hubei province (in Chinese).
      [18] 黄爽兵, 王焰新, 曹菱, 等, 2012. 包气带土壤DOM三维荧光表征及对砷污染的指示意义. 地球科学——中国地质大学学报, 37(3). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203026.htm
      [19] 王焰新, 苏春利, 谢先军, 等, 2010. 大同盆地地下水砷异常及其成因研究. 中国地质, 37(3): 771-780. doi: 10.3969/j.issn.1000-3657.2010.03.033
      [20] 杨攀新, 高战武, 张俊, 2009. 江汉盆地构造模式和演化及其与中强地震关系研究. 地震, 29(4): 123-129. doi: 10.3969/j.issn.1000-3274.2009.04.014
      [21] 原鉴申, 康锐林, 孙庆起, 等, 1985. 江汉平原第四纪地质、水文地质、工程地质及环境地质综合调查报告. 湖北省水文地质工程地质大队.
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  3067
    • HTML全文浏览量:  247
    • PDF下载量:  454
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-04-10
    • 刊出日期:  2013-09-15

    目录

      /

      返回文章
      返回