Analysis of Spatial and Temporal Dynamics of Carbon Storage of Pinus Massoniana Forest in the Hetian Basin in County Changting of Fujian Province, China
-
摘要: 以福建省长汀县侵蚀退化严重的河田盆地为例,重点研究该区水土流失生态修复的主要树种——马尾松林的碳储量动态变化.通过2011年的野外样地调查获得了马尾松林的实测数据,并将其与同期SPOT5影像对应样地改进的归一化植被指数(MNDVI)数据进行回归分析,建立了河田盆地2011年马尾松林碳储量的反演模型.进一步通过不变特征法对所获得的2011年模型进行校正,使其能够推广应用于2004年和2009年的马尾松林碳储量反演,以揭示河田盆地马尾松林碳储量在2004—2011年间的时空变化.研究结果表明,这期间河田盆地马尾松林的总碳储量和碳密度均呈逐步上升的趋势:总碳储量由2004年的9.28×105 t增加到2011年的12.49×105 t,碳密度由27.31×10-4 t/m2增加到35.84×10-4 t/m2,总的说明该区马尾松林的碳汇能力在这期间有了明显的增加,而且在2009—2011年间表现得更为明显.Abstract: Implementing the ecological restoration by giving priority to planting trees in the eroded area, it is expected to increase the carbon sink of forests. This paper studies the dynamics of Pinus massoniana forest carbon storage of Hetian basin in Changting County of Fujian Province, southeastern China. As Pinus massoniana is the main species used in the ecological restoration, we carried out field surveys with 31 sampling sites in November 2011 to acquire basic data of Pinus massoniana forest in the study area. The regression analysis between the filed-acquired data and the modified normalized difference vegetation index (MNDVI) data derived from a near-synchronised SPOT5 image was performed in order to develop a model to estimate the carbon storage of Pinus massoniana forest in the Hetian basin area. The obtained 2011 model was then calibrated using pseudo-invariant feature (PIF) method to allow the model to be used for estimating the carbon storage of Pinus massoniana forest in 2004 and 2009. As a result, the spatial and temporal dynamics of carbon storage of Pinus massoniana forest in the Hetian basin during 2004 and 2011 were revealed. The results indicate a gradual increase in the carbon storage and carbon density of Pinus massoniana forest in the Hetian basin area in the study period. The carbon storage grew from 9.28×105 t in 2004 to 12.49×105 t in 2011, accompanied by an increase in carbon density from 27.31×10-4 t/m2 to 35.84×10-4 t/m2 during the period. This suggests a significant increase of the carbon sink of Pinus massoniana forest in the area, particularly in the last two years from 2009 to 2011.
-
Key words:
- remote sensing /
- Pinus massoniana /
- carbon storage /
- Changting /
- environment effect
-
表 1 马尾松林碳储量反演模型
Table 1. Models for retrieving the carbon storage of Pinus massoniana forest
函数类型 NDVI R2 RMSE MNDVI R2 RMSE 线性 C=185.35NDVI-91.357 0.386 19.601 C=151.351MNDVI-41.948 0.655 14.685 对数 C = 100.28ln(NDVI)+72.261 0.346 20.228 C=49.877ln(MNDVI)+67.703 0.525 17.240 二次多项式 C= 571.38NDVI2-487.83NDVI+102.93 0.447 19.018 C=-148.79MNDVI2+362.235MNDVI+14.232 0.737 13.114 乘幂 C = 308.23NDVI6.602 0.592 0.805 C = 193.524MNDVI3.103 0.801 0.561 指数 C = 0.008 3e11.801NDVI 0.617 0.779 C=0.271 6e8.818MNDVI 0.877 0.441 注:回归方程均通过0.1%的显著性检验. 表 2 2004—2011年研究区的马尾松林碳储量统计
Table 2. The carbon storage of Pinus massoniana forest in the study area from 2004 to 2011
时间(年) 面积(104 m2) 碳密度(10-4 t/m2) 总碳储量(105 t) 2004 33 965.40 27.31 9.28 2009 35 003.94 33.20 11.62 2011 34 856.45 35.84 12.49 表 3 2004—2011年间各级马尾松林碳储量的分布统计
Table 3. The classified carbon storage of Pinus massoniana forest during the study years
碳储量范围(10-4 t/m2) 面积所占百分比(%) 碳储量总量所占百分比(%) 2004年 2009年 2011年 2004年 2009年 2011年 C≤25 64.46 53.40 57.54 22.86 18.81 17.72 25<C≤50 19.03 24.53 19.44 25.01 26.61 19.39 50<C≤75 8.88 12.06 9.51 19.82 22.17 16.26 75<C≤100 4.09 5.51 5.35 12.85 14.25 12.89 C>100 3.54 4.50 8.16 19.47 18.16 33.74 表 4 马尾松林碳储量在不同高程的分布特征
Table 4. Spatial variations of the carbon storage of Pinus massoniana forest with different altitudes
时间(年) 高程(m) 面积(104 m2) 面积所占百分比(%) 平均碳储量(10-4 t/m2) 总碳储量(105 t) 总碳储量所占百分比(%) 2004 ≤400 21 754.93 64.05 17.80 3.87 41.74 400~600 9 917.48 29.20 37.09 3.68 39.65 600~800 2 113.22 6.22 73.01 1.54 16.63 >800 179.78 0.53 101.82 0.18 1.97 2009 ≤400 22 084.37 63.09 24.36 5.38 46.30 400~600 10 988.52 31.39 45.56 5.01 43.08 600~800 1 834.30 5.24 64.13 1.18 10.12 >800 96.74 0.28 59.42 0.06 0.49 2011 ≤400 20 621.14 59.16 20.42 4.21 33.70 400~600 10 608.53 30.43 49.24 5.22 41.82 600~800 3 321.45 9.53 83.78 2.78 22.28 >800 305.32 0.88 90.20 0.28 2.20 表 5 马尾松林碳储量在不同坡度的分布特征
Table 5. Spatial variations of the carbon storage of Pinus massoniana forest with different slopes
时间(年) 坡度(°) 面积(104 m2) 面积所占百分比(%) 平均碳储量(10-4 t/m2) 总碳储量(105 t) 总碳储量所占百分比(%) 2004 ≤5 9 463.51 27.86 22.45 2.12 22.90 5~15 13 528.01 39.83 22.91 3.10 33.40 15~25 7 120.64 20.96 32.28 2.30 24.77 25~35 2 913.87 8.58 42.82 1.25 13.45 35~45 788.24 2.32 52.38 0.41 4.45 >45 151.14 0.44 63.00 0.10 1.03 2009 ≤5 9 251.32 26.43 28.93 2.68 23.03 5~15 13 680.01 39.08 29.04 3.97 34.19 15~25 7 773.11 22.21 37.68 2.93 25.20 25~35 3 262.26 9.32 45.87 1.50 12.88 35~45 877.88 2.51 52.20 0.46 3.94 >45 159.36 0.46 55.19 0.09 0.76 2011 ≤5 9 362.68 26.86 29.56 2.77 22.16 5~15 13 470.33 38.65 29.37 3.96 31.67 15~25 7 460.13 21.40 42.19 3.15 25.19 25~35 3 348.35 9.61 54.95 1.84 14.73 35~45 1 009.36 2.90 63.70 0.64 5.15 >45 205.61 0.59 67.12 0.14 1.10 -
[1] Chen, D.X., Li, Y.D., Liu, H.P., et al., 2010. Biomass and Carbon Dynamics of a Tropical Mountain Rain Forest in China. Science in China: Life Science, 40(7): 596-609(in Chinese with English abstract). doi: 10.1007/s11427-010-4024-2 [2] Eggleston, H.S., Buendia, L., Miwa, K., et al., 2006.2006 IPCC Guidelines for National Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies, Japan. [3] Fang, J.Y., Guo, Z.D., Piao, S.L., et al., 2007. Terrestrial Vegetation Carbon Sinks in China, 1981-2000. Science in China (Ser. D), 37(6): 804-812(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200709007.htm [4] Fujian Forestry Survey and Design Institute, 1978. Forest Survey Tables. Fujian Forestry Survey and Design Institute, Fujian (in Chinese). [5] Gallaun, H., Zanchi, G., Nabuurs, G., et al., 2010. EU-Wide Maps of Growing Stock and Aboveground Biomass in Forests Based on Remote Sensing and Field Measurements. Forest Ecology and Management, 260(3): 252-261. doi: 10.1016/j.foreco.2009.10.011 [6] García, M., Riaño, D., Chuvieco, E., et al., 2010. Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using LiDAR Height and Intensity Data. Remote Sensing of Environment, 114(4): 816-830. doi: 10.1016/j.rse.2009.11.021 [7] Gibbs, H.K., Brown, S., Niles, J.O., et al., 2007. Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality. Environmental Research Letters, 2(4): 1-13. doi: 10.1088/1748-9326/2/4/045023 [8] Houghton, R.A., Hackler, J.L., Lawrence, K.T., 1999. The U.S. Carbon Budget: Contributions from Land-Use Change. Science, 285(5427): 574-578. doi: 10.1126/science.285.5427.574 [9] Huang, C.D., Zhang, J., Yang, W.Q., et al., 2008. Dynamics on Forest Carbon Stock in Sichuan Province and Chongqing City. Acta Ecologica Sinica, 28(3): 965-975(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXB200803010.htm [10] Hudak, A.T., Strand, E.K., Vierling, L.A., et al., 2012. Quantifying Aboveground Forest Carbon Pools and Fluxes from Repeat LiDAR Surveys. Remote Sensing of Environment, 123: 25-40. doi: 10.1016/j.rse.2012.02.023 [11] Hyde, P., Nelson, R., Kimes, D., et al., 2007. Exploring LiDAR-RaDAR Synergy-Predicting Aboveground Biomass in a Southwestern Ponderosa Pine Forest Using LiDAR, SAR and InSAR. Remote Sensing of Environment, 106(1): 28-38. doi: 10.1016/j.rse.2006.07.017 [12] Jiang, F.S., Huang, Y.H., Zhong, B.L., et al., 2009. Effects of Different Measures on Biomass and Productivity in Eroded Red-Soil Region. Bulletin of Soil and Water Conservation, 29(5): 12-16(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STTB200905004.htm [13] Li, H.K., Lei, Y.C., 2010. Forest Biomass and Carbon Stocks of Vegetation Assessment in China. China Forestry Publishing House, Beijing, 29-30(in Chinese). [14] Liang, S.L., Fang, H.L., Chen, M.Z., 2011. Atmospheric Correction of Landsat ETM+ Land Surface Imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2490-2498. http://ieeexplore.ieee.org/document/964986 [15] Lin, N., Xu, H.Q., He, H., 2013. Land Use Changes in a Reddish Soil Erosion Region of Southern China: Hetian Basin, County Changting. Acta Ecologica Sinica, 33(10): 3115-3127(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/stxb201310005 [16] Liu, G.H., Fu, B.J., Fang, J.Y., 2000. Carbon Dynamics of Chinese Forests and Its Contribution to Global Carbon Balance. Acta Ecologica Sinica, 20(5): 733-740(in Chinese with English abstract). http://europepmc.org/abstract/CBA/533661 [17] Myeong, S., Nowak, D.J., Duggin, M.J., 2006. A Temporal Analysis of Urban Forest Carbon Storage Using Remote Sensing. Remote Sensing of Environment, 101(2): 277-282. doi: 10.1016/j.rse.2005.12.001 [18] Nemani, R., Pierce, L., Running, S., et al., 1993. Forest Ecosystem Processes at the Watershed Scale: Sensitivity to Remotely-Sensed Leaf Area Index Estimates. International Journal of Remote Sensing, 14(13): 2519-2534. doi: 10.1080/01431169308904290 [19] Olson, J.S., Watts, J.A., Allison, L.J., 1983. Carbon in Live Vegetation of Major World Ecosystem. United States Department of Energy, Washington, D.C. . [20] Pan, Y., Birdsey, R.A., Fang, J.Y., et al., 2011. A Large and Persistent Carbon Sink in the World's Forests. Science, 333(6045): 988-993. doi: 10.1126/science.1201609 [21] Piao, S.L., Fang, J.Y., Ciais, P., et al., 2009. The Carbon Balance of Terrestrial Ecosystems in China. Nature, 458(7241): 1009-1013. doi: 10.1038/nature07944 [22] Sabine, C.L., Heimann, M., Artaxo, P., et al., 2004. Current Status and Past Trends of the Global Carbon Cycle. In: Field, C.B., Raupach, M.R., eds., The Global Carbon Cycle: Integrating Humans, Climate and the Natural World. Island Press, Washington, 17-44. [23] Schott, J.R., Salvaggio, C., Volchok, W.J., 1988. Radiometric Scene Normalization Using Pseudoinvariant Features. Remote Sensing of Environment, 26(1): 1-14. doi: 10.1016/0034-4257(88)90116-2 [24] State Forestry Administration, 2003. Forest Resource Planning Design Investigation Main Technical Regulations. State Forestry Administration, Beijing, 13-14 (in Chinese). [25] Wang, S.J., Guan, D.S., Li, X., et al., 2008. The Temporal Spatial Evolution and Heterogeneity of Forest Carbon in Guangzhou, China. Acta Scientiae Circumstantiae, 28(4): 778-785(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX200804027.htm [26] Wen, X.L., Xu, H.Q., 2010. Remote Sensing Analysis of Impact of Fuzhou City Expansion on Water Quality of Lower Minjiang River, China. Scientia Geographica Sinica, 30(4): 624-629(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=35208678 [27] Xie, J.S., Huang, R.Z., Chen, Y.X., et al., 2001. Change of Biomass and Productivity of Pinus massoniana Community after Closing of Hillsides and Management in Serious Eroded Red Soil. Journal of Zhejiang Forestry College, 18(4): 354-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJLX200104004.htm [28] Xu, H.Q., 2007. Image-Based Normalization Technique Used for Landsat TM/ETM+ Imagery. Geomatics and Information Science of Wuhan University, 32(1): 62-66(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=23613247 [29] Xu, H.Q., 2008. Comparison of the Models for the Normalization of Landsat Imagery. Geo-Information Science, 10(3): 294-301(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-geo-information-science_thesis/0201253112366.html [30] Xu, H.Q., Zhang, T.J., 2011. Cross Comparison of ASTER and Landsat ETM+ Multispectral Measurements for NDVI and SAVI Vegetation Indices. Spectroscopy and Spectral Analysis, 31(7): 1902-1907(in Chinese with English abstract). http://europepmc.org/abstract/MED/21942048 [31] Zeng, C.S., 2006. Fujian Typical Area Ecological Environment Research. China Environmental Science Press, Beijing, 1-26(in Chinese). [32] 陈德祥, 李意德, Liu Heping, 等, 2010. 尖峰岭热带山地雨林生物量及碳库动态. 中国科学: 生命科学, 40(7): 596-609. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201007007.htm [33] 方精云, 郭兆迪, 朴世龙, 等, 2007.1981-2000年中国陆地植被碳汇的估算. 中国科学(D辑), 37(6): 804-812. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200706011.htm [34] 福建省林业勘察设计院, 1978. 森林调查用表. 福建: 福建省林业勘察设计院. [35] 黄从德, 张健, 杨万勤, 等, 2008. 四川省及重庆地区森林植被碳储量动态. 生态学报, 28(3): 965-975. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200803010.htm [36] 蒋芳市, 黄炎和, 钟炳林, 等, 2009. 不同治理措施对侵蚀红壤区生物量及生产力的影响. 水土保持通报, 29(5): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200905004.htm [37] 李海奎, 雷渊才, 2010. 中国森林植被生物量和碳储量评估. 北京: 中国林业出版社. 29-30. [38] 林娜, 徐涵秋, 何慧, 2013. 南方红壤水土流失区土地利用动态变化研究——以长汀河田盆地区为例. 生态学报, 33(10): 3115-3127. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201310007.htm [39] 刘国华, 傅伯杰, 方精云, 2000. 中国森林碳动态及其对全球碳平衡的贡献. 生态学报, 20(5): 733-740. doi: 10.3321/j.issn:1000-0933.2000.05.004 [40] 国家林业局, 2003. 森林资源规划设计调查主要技术规定. 北京: 国家林业局, 13-14. [41] 王淑君, 管东生, 黎夏, 等, 2008. 广州森林碳储量时空演变及异质性分析. 环境科学学报, 28(4): 778-785. doi: 10.3321/j.issn:0253-2468.2008.04.026 [42] 温小乐, 徐涵秋, 2010. 福州城市扩展对闽江下游水质影响的遥感分析. 地理科学, 30(4): 624-629. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201004024.htm [43] 谢锦升, 黄荣珍, 陈银秀, 等, 2001. 严重侵蚀红壤封禁管理后群落的生物量及生产力变化. 浙江林学院学报, 18(4): 354-358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLX200104004.htm [44] 徐涵秋, 2007. 基于影像的Landsat TM/ETM+数据正规化技术. 武汉大学学报(信息科学版), 32(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200701015.htm [45] 徐涵秋, 2008. Landsat遥感影像正规化处理的模型比较研究. 地球信息科学, 10(3): 294-301. doi: 10.3969/j.issn.1560-8999.2008.03.004 [46] 徐涵秋, 张铁军, 2011. ASTER与Landsat ETM+植被指数的交互比较. 光谱学与光谱分析, 31(7): 1902-1907. doi: 10.3964/j.issn.1000-0593(2011)07-1902-06 [47] 曾从盛, 2006. 福建典型区生态环境研究. 北京: 中国环境科学出版社, 1-26.