Tracing Submarine Groundwater Discharge and Associated Nutrient Fluxes into Jiaozhou Bay by Continuous 222Rn Measurements
-
摘要: 为了量化胶州湾东北海岸带的海底地下水排泄量和评价通过海底地下水排泄输入的营养盐数量,分别于2011年10月和2012年5月在胶州湾北岸东大洋码头附近对海水中的222Rn进行了48 h连续测量.通过构建测量点海水中222Rn质量平衡模型,计算得到海底地下水排泄速率平均值分别为6.38 cm/d和8.29 cm/d;实际观测到的海底地下水排泄速率变动较大,其主要控制因素是降水量、潮汐和波浪.根据海底地下水排泄速率,获得地下水输入的DIN(溶解无机氮)为47.0×103 mol/d(2011年10月)和48.6×103 mol/d(2012年5月),可溶性SiO2为15.5×103 mol/d(2011年10月)和17.3×103 mol/d(2012年5月),DIP(溶解性磷酸盐)为0.6×103 mol/d(2012年5月),地下水对胶州湾的营养盐输入具有重要贡献.Abstract: The aim of this paper is to quantify submarine groundwater discharge (SGD) into the northeast coast of Jiaozhou Bay, then estimate the SGD-derived nutrient fluxes. At Dongdayang dock located at the north shoreline of Jiaozhou Bay, the author deployed one in-situ 48 h continuous experiment for measuring 222Rn activity in seawater, in October 2011 and May 2012, respectively. Through establishing 222Rn mass balance model at the observing site, the average SGD rates are assessed to be 6.38 cm/d for October 2011 and 8.29 cm/d for May 2012. Measured results show the SGD rates fluctuate greatly, daily and seasonally, which are mainly controlled by precipitation, tidal pump and wave oscillation. Based on the SGD rates, the SGD-derived nutrient fluxes are calculated to be 47.0×103-48.6×103 mol/d for DIN (dissolved inorganic nitrogen), 15.5×103-17.3×103 mol/d for the soluble SiO2, and 0.6×103 mol/d for DIP (dissolved inorganic phosphorus), respectively. These SGD-derived nutrient fluxes contribute to the eutrophication in Jiaozhou Bay to a certain degree which need due attention.
-
Key words:
- submarine groundwater discharge /
- radon-222 /
- nutrients /
- Jiaozhou Bay /
- submarine geology
-
表 1 沉积物孔隙水中222Rn活度
Table 1. 222Rn activities in the pore water of sediments
样品编号 SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 沉积物(Bq/kg) 0.70 0.87 0.48 0.75 0.82 0.46 0.76 0.65 孔隙水(Bq/m3) 2 416.65 3 447.46 2 060.54 2 756.01 2 717.87 1 653.81 2 549.66 2 283.38 表 2 地下水中的营养盐浓度及估算通量
Table 2. Nutrients in groundwater and nutrient loadings
日期 水样 DIN(μM) DIN通量(103 mol/d) PO43-P(μM) PO43-P通量(103 mol/d) SiO2-Si(μM) SiO2-Si通量(103 mol/d) 2011年10月 G18 730.3 未检出 211.9 G19 744.1 未检出 273.3 平均值 737.2 47.0 242.6 15.5 2012年5月 G18 612.7 7.2 231.4 G19 559.1 7.5 186.3 平均值 585.9 48.6 7.4 0.6 208.9 17.3 -
[1] Beck, A.J., Tsukamoto, Y., Tovar-Sanchez, A., et al., 2007. Importance of Geochemical Transformations in Determining Submarine Groundwater Discharge-Derived Trace Metal and Nutrient Fluxes. Applied Geochemistry, 22(2): 477-490. doi: 10.1016/j.apgeochem.2006.10.005 [2] Bobba, A.G., Chambers, P.A., Wrona, F.J., 2012. Submarine Groundwater Discharge (SGWD): An Unseen yet Potentially Important Coastal Phenomenon in Canada. Nat Hazards, 60(3): 991-1012. doi: 10.1007/s11069-011-9884-7 [3] Bratton, J.F., Böhlke, J K., Krantz, D.E., et al., 2009. Flow and Geochemistry of Groundwater beneath a Back-Barrier Lagoon—The Subterranean Estuary at Chincoteague Bay, Maryland, USA. Marine Chemistry, 113(1-2): 78-92. doi: 10.1016/j.marchem.2009.01.004 [4] Burnett, W.C., Taniguchi, M., Oberdorfer, J., 2001. Measurement and Significance of the Direct Discharge of Groundwater into the Coastal Zone. Journal of Sea Research, 46(2): 109-116. doi: 10.1016/S1385-1101(01)00075-2 [5] Charette, M.A., Buesseler, K.O., 2004. Submarine Groundwater Discharge of Nutrients and Copper to an Urban Subestuary of Chesapeake Bay. Limnol. Oceanogr. , 49(2): 376-385. doi: 10.4319/lo.2004.49.2.0376 [6] Charette, M.A., Sholkovitz, E.R., 2006. Trace Element Cycling in a Subterranean Estuary: Part 2. Geochemistry of the Pore Water. Geochimica et Cosmochimica Acta, 70(4): 811-826. doi: 10.1016/j.gca.2005.10.019 [7] Chen, C., Yang, G.P., Gao, X.C., et al., 2012. Nutrients Distributional Characteristics and Eutrophication in the Sea-Surface Microlayer and Subsurface Water in the Jiaozhou Bay. Acta Scientiae Circumstantiae, 32(8): 1856-1865 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/hjkxxb201208010 [8] Chen, J.R., Chen, X.E., Yu, H.M., et al., 2011. Three-Dimensional High-Resolution Numerical Study of the Tide and Tidal Current in the Jiaozhou Bay. Periodical of Ocean University of China, 41(7/8): 29-35 (in Chinese with English abstract). http://www.researchgate.net/publication/260983294_Three-Dimensional_High-Resolution_Numerical_Study_of_the_Tide_and_Tidal_Current_in_the_Jiaozhou_Bay [9] Costa Jr., O.S., Nimmo, M., Attrill, M.J., 2008. Coastal Nutrification in Brazil: A Review of the Role of Nutrient Excess on Coral Reef Demise. Journal of South American Earth Sciences, 25(2): 257-270. doi: 10.1016/j.jsames.2007.10.002 [10] Dulaiova, H., Camilli, R., Henderson, P.B., et al., 2010. Coupled Radon, Methane and Nitrate Sensors for Large-Scale Assessment of Groundwater Discharge and Non-Point Source Pollution to Coastal Waters. Journal of Environmental Radioactivity, 101(7): 553-563. doi: 10.1016/j.jenvrad.2009.12.004 [11] Gonneea, M.E., Morris, P.J., Dulaiova, H., et al., 2008. New Perspectives on Radium Behavior within a Subterranean Estuary. Marine Chemistry, 109(3-4): 250-267. doi: 10.1016/j.marchem.2007.12.002 [12] Guo, Z.R., Huang, L., Liu, H.T., et al., 2008. Estimating Submarine Inputs of Groundwater to a Coastal Bay Using Radium Isotopes. Acta Geoscientica Sinica, 29(5): 647-652 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112240807.html [13] Guo, Z.R., Huang, L., Yuan, X.J., et al., 2011. Estimating Submarine Groundwater Discharge to Jiulong River Estuary Using Ra Isotopes. Advances in Water Science, 22(1): 118-125 (in Chinese with English abstract). [14] Guo, Z.R., Li, K.P., Yuan, X.J., et al., 2012. Assessment of Submarine Groundwater Discharge into Wuyuan Bay via Continuous Radon-222 Measurements. Advances in Water Science, 23(2): 263-270 (in Chinese with English abstract). http://www.cqvip.com/QK/97113X/201202/41252208.html [15] Hwang, D.W., Kim, G., Lee, W.C., et al., 2010. The Role of Submarine Groundwater Discharge (SGD) in Nutrient Budgets of Gamak Bay, A Shellfish Farming Bay, in Korea. Journal of Sea Research, 64(3): 224-230. doi: 10.1016/j.seares.2010.02.006 [16] Johannesson, K.H., Chevis, D.A., Burdige, D.J., 2011. Submarine Groundwater Discharge is an Important Net Source of Light and Middle REEs to Coastal Waters of the Indian River Lagoon, Florida, USA. Geochimica et Cosmochimica Acta, 75(3): 825-843. doi: 10.1016/j.gca.2010.11.005 [17] Lambert, M.J., Burnett, W.C., 2003. Submarine Groundwater Discharge Estimates at a Florida Coastal Site Based on Continuous Radon Measurements. Biogeochemistry, 66(1-2): 55-73. doi: 10.1023/B:BIOG.0000006057.63478.fa [18] Laurier, F.J.G., Cossa, D., Beucher, C., et al., 2007. The Impact of Groundwater Discharges on Mercury Partitioning, Speciation and Bioavailability to Mussels in a Coastal Zone. Marine Chemistry, 104(3-4): 143-155. doi: 10.1016/j.marchem.2006.10.010 [19] Lee, Y.W., Kim, G., 2007. Linking Groundwater-Borne Nutrients and Dinoflagellate Red-Tide Outbreaks in the Southern Sea of Korea Using a Ra Tracer. Estuarine, Coastal and Shelf Science, 71(1-2): 309-317. doi: 10.1016/j.ecss.2006.08.004 [20] Lee, Y.W., Hwang, D.W., Kim, G., et al., 2009. Nutrient Inputs from Submarine Groundwater Discharge (SGD) in Masan Bay, an Embayment Surrounded by Heavily Industrialized Cities, Korea. Science of the Total Environment, 407(9): 3181-3188. doi: 10.1016/j.scitotenv.2008.04.013 [21] Moore, W.S., 1996. Large Groundwater Inputs to Coastal Waters Revealed by 226Ra Enrichments. Nature, 380: 612-614. doi: 10.1038/380612a0 [22] Moore, W.S., 2006. The Role of Submarine Groundwater Discharge in Coastal Biogeochemistry. Journal of Geochemical Exploration, 88(1-3): 389-393. doi: 10.1016/j.gexplo.2005.08.082 [23] Schwartz, M.C., 2003. Significant Groundwater Input to a Coastal Plain Estuary: Assessment from Excess Radon. Estuarine, Coastal and Shelf Science, 56(1): 31-42. doi: 10.1016/S0272-7714(02)00118-X [24] Street, J.H., Knee, K.L., Grossman, E.E., et al., 2008. Submarine Groundwater Discharge and Nutrient Addition to the Coastal Zone and Coral Reefs of Leeward Hawaii. Marine Chemistry, 109(3-4): 355-376. doi: 10.1016/j.marchem.2007.08.009 [25] Swarzenski, P.W., Reich, C., Kroeger, K.D., et al., 2007. Ra and Rn Isotopes as Natural Tracers of Submarine Groundwater Discharge in Tampa Bay, Florida. Marine Chemistry, 104(1-2): 69-84. doi: 10.1016/j.marchem.2006.08.001 [26] Wan g, Y.L., An, W.C., Xu, Y., 2011. Present Status and Environmental Assessment on Water Quality of Jiaozhou Bay. Environmental Science and Management, 36(9): 164-167 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BFHJ201109041.htm [27] Windom, H.L., Moore, W.S., Niencheski, L.H., et al., 2006. Submarine Groundwater Discharge: A Large, Previously Unrecognized Source of Dissolved Iron to the South Atlantic Ocean. Marine Chemistry, 102(3-4): 252-266. doi: 10.1016/j.marchem.2006.06.016 [28] Zhuo, W.H., Iida, T., Yang, X.T., 2001. Occurrence of 222Rn, 226Ra, 228Ra and U in Groundwater in Fujian Province, China. Journal of Environmental Radioactivity, 53(1): 111-120. doi: 10.1016/S0265-931X(00)00108-9 [29] 陈晨, 杨桂鹏, 高先池, 等, 2012. 胶州湾微表层和次表层海水中营养盐的分布特征及富营养化研究. 环境科学学报, 32(8): 1856-1865. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201208013.htm [30] 陈金瑞, 陈学恩, 于华明, 等, 2011. 胶州湾潮汐潮流高分辨率数值模拟研究. 中国海洋大学学报, 41(7/8): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY2011Z2004.htm [31] 郭占荣, 黄磊, 刘花台, 等, 2008. 镭同位素示踪隆教湾的海底地下水排泄. 地球学报, 29(5): 647-652. doi: 10.3321/j.issn:1006-3021.2008.05.016 [32] 郭占荣, 黄磊, 袁晓婕, 等, 2011. 用镭同位素评价九龙江河口区的地下水输入. 水科学进展, 22(1): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201101017.htm [33] 郭占荣, 李开培, 袁晓婕, 等, 2012. 用氡-222评价五缘湾的地下水输入. 水科学进展, 23(2): 263-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201202020.htm [34] 王艳玲, 安文超, 许颖, 2011. 胶州湾海域水质现状评价. 环境科学与管理, 36(9): 164-167. doi: 10.3969/j.issn.1673-1212.2011.09.040